Skip to main content

Hydrogen Peroxide (H2O2) Detection with Nanoprobes for Biological Applications: A Mini-review

  • Protocol
  • First Online:
Oxidative Stress and Nanotechnology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1028))

Abstract

Hydrogen peroxide (H2O2) is an important member of the reactive oxygen species, playing various roles in biology and medicine. The conventional detection methods for H2O2 are often restricted by their limited sensitivity, poor selectivity towards H2O2, inappropriate physicochemical properties for detection in biological environments, long response time, etc. We briefly review here some recent nanotechnology-­based approaches for H2O2 detection, which present an effective improvement, overcoming some of the limitations of the conventional H2O2 sensing techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Babior BM (1978) Oxygen-dependent microbial killing by phagocytes. N Engl J Med 298(12):659–668

    Article  CAS  Google Scholar 

  2. Karnovsky ML, Lazdins J, Simmons SR (1975) Metabolism of activated mononuclear phagocytes at rest and during phagocytosis. Mononuclear Phagocytes in immunity, infection, and pathology. R. Van Furth, editor. BlackweU Scientific Publications, Oxford, pp 432–439

    Google Scholar 

  3. Oren R et al (1963) Metabolic patterns in three types of phagocytizing cells. J Cell Biol 17(3):487

    Article  CAS  Google Scholar 

  4. Balaban RS, Nemoto S, Finkel T (2005) Mitochondria, oxidants, and aging. Cell 120(4):483–495

    Article  CAS  Google Scholar 

  5. Cutler RG (2005) Oxidative stress and aging: catalase is a longevity determinant enzyme. Rejuvenation Res 8(3):138–140

    Article  CAS  Google Scholar 

  6. Finkel T (2005) Radical medicine: treating ageing to cure disease. Nat Rev Mol Cell Biol 6(12):971–976

    Article  CAS  Google Scholar 

  7. Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408:239–247

    Article  CAS  Google Scholar 

  8. Finkel T (2003) Oxidant signals and oxidative stress. Curr Opin Cell Biol 15(2):247–254

    Article  CAS  Google Scholar 

  9. Rhee SG (2006) H2O2, a necessary evil for cell signaling. Science 312(5782):1882

    Article  Google Scholar 

  10. Rhee SG et al (2003) Cellular regulation by hydrogen peroxide. J Am Soc Nephrol 14(suppl 3):S211–S215

    Article  CAS  Google Scholar 

  11. Niethammer P et al (2009) A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish. Nature 459(7249):996–999

    Article  CAS  Google Scholar 

  12. Rojkind M et al (2002) Role of hydrogen peroxide and oxidative stress in healing responses. Cell Mol Life Sci 59(11):1872–1891

    Article  CAS  Google Scholar 

  13. Eberhardt MK (2001) Reactive oxygen metabolites: chemistry and medical consequences. CRC press LLC, Boca Raton, FL

    Google Scholar 

  14. McBride AG, Borutaité V, Brown GC (1999) Superoxide dismutase and hydrogen peroxide cause rapid nitric oxide breakdown, peroxynitrite production and subsequent cell death. Biochim Biophys Acta 1454(3):275–288

    Article  CAS  Google Scholar 

  15. McCord JM, Fridovich I (1969) Superoxide dismutase. J Biol Chem 244(22):6049

    CAS  Google Scholar 

  16. Lambeth JD (2004) NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol 4(3):181–189

    Article  CAS  Google Scholar 

  17. Emerit I (1994) Reactive oxygen species, chromosome mutation, and cancer: possible role of clastogenic factors in carcinogenesis. Free Radic Biol Med 16(1):99–109

    Article  CAS  Google Scholar 

  18. Waris G, Ahsan H (2006) Reactive oxygen species: role in the development of cancer and various chronic conditions. J Carcinog 5(1):14

    Article  Google Scholar 

  19. Harrison D et al (2003) Role of oxidative stress in atherosclerosis. Am J Cardiol 91(3):7–11

    Article  Google Scholar 

  20. Simonian NA, Coyle JT (1996) Oxidative stress in neurodegenerative diseases. Annu Rev Pharmacol Toxicol 36(1):83–106

    Article  CAS  Google Scholar 

  21. Griffiths H (2005) ROS as signalling molecules in T cells—evidence for abnormal redox signalling in the autoimmune disease, rheumatoid arthritis. Redox Rep 10(6):273–280

    Article  CAS  Google Scholar 

  22. Namazi MR (2009) Cytochrome-P450 enzymes and autoimmunity: expansion of the relationship and introduction of free radicals as the link. J Autoimmune Dis 6(1):4

    Article  CAS  Google Scholar 

  23. Houstis N, Rosen ED, Lander ES (2006) Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature 440(7086):944–948

    Article  CAS  Google Scholar 

  24. Nishikawa T, Araki E (2007) Impact of mitochondrial ROS production in the pathogenesis of diabetes mellitus and its complications. Antioxid Redox Signal 9(3):343–353

    Article  CAS  Google Scholar 

  25. Zepp RG, Faust BC, Hoigne J (1992) Hydroxyl radical formation in aqueous reactions (pH 3–8) of iron (II) with hydrogen peroxide: the photo-Fenton reaction. Environ Sci Technol 26(2):313–319

    Article  CAS  Google Scholar 

  26. Weiss SJ, Slivka A (1982) Monocyte and granulocyte-­mediated tumor cell destruction. A role for the hydrogen peroxide-myeloperoxidase-­chloride system. J Clin Invest 69(2):255

    Article  CAS  Google Scholar 

  27. Uppu RM, Pryor WA (1996) Synthesis of peroxynitrite in a two-phase system using isoamyl nitrite and hydrogen peroxide. Anal Biochem 236(2):242–249

    Article  CAS  Google Scholar 

  28. Bienert GP, Schjoerring JK, Jahn TP (2006) Membrane transport of hydrogen peroxide. Biochim Biophys Acta 1758(8):994–1003

    Article  CAS  Google Scholar 

  29. D’Autréaux B, Toledano MB (2007) ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol 8(10):813–824

    Article  Google Scholar 

  30. Bae YS et al (1997) Epidermal growth factor (EGF)-induced generation of hydrogen peroxide. J Biol Chem 272(1):217

    Article  CAS  Google Scholar 

  31. Sundaresan M et al (1995) Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science 270(5234):296

    Article  CAS  Google Scholar 

  32. Goldstein BJ et al (2005) Role of insulin-­induced reactive oxygen species in the insulin signaling pathway. Antioxid Redox Signal 7(7–8):1021–1031

    Article  CAS  Google Scholar 

  33. Patterson C et al (1999) Stimulation of a vascular smooth muscle cell NAD (P) H oxidase by thrombin. J Biol Chem 274(28):19814

    Article  CAS  Google Scholar 

  34. Mukhin YV et al (2000) 5-Hydroxytryptamine1A receptor/Gibetagamma stimulates mitogen-activated protein kinase via NAD (P) H oxidase and reactive oxygen species upstream of src in chinese hamster ovary fibroblasts. Biochem J 347(Pt 1):61

    Article  CAS  Google Scholar 

  35. Hernández-García D et al (2010) Reactive oxygen species: a radical role in development Free Radic Biol Med 49(2):130–143

    Article  Google Scholar 

  36. Paulsen CE, Carroll KS (2009) Orchestrating redox signaling networks through regulatory cysteine switches. ACS Chem Biol 5(1):47–62

    Article  Google Scholar 

  37. Hurdis E, Romeyn H Jr (1954) Accuracy of determination of hydrogen peroxide by cerate oxidimetry. Anal Chem 26(2):320–325

    Article  CAS  Google Scholar 

  38. Rauhut MM et al (1967) Chemiluminescence from reactions of electronegatively substituted aryl oxalates with hydrogen peroxide and fluorescent compounds. J Am Chem Soc 89(25):6515–6522

    Article  CAS  Google Scholar 

  39. Soh N (2006) Recent advances in fluorescent probes for the detection of reactive oxygen species. Anal Bioanal Chem 386(3):532–543

    Article  CAS  Google Scholar 

  40. Li J, Tan SN, Ge H (1996) Silica sol-gel immobilized amperometric biosensor for hydrogen peroxide. Anal Chim Acta 335(1–2):137–145

    Article  CAS  Google Scholar 

  41. Razola SS et al (2002) Hydrogen peroxide sensitive amperometric biosensor based on horseradish peroxidase entrapped in a polypyrrole electrode. Biosens Bioelectron 17(11–12):921–928

    Article  CAS  Google Scholar 

  42. Lee D et al (2007) In vivo imaging of hydrogen peroxide with chemiluminescent nanoparticles. Nat Mater 6(10):765–769

    Article  CAS  Google Scholar 

  43. Dasari M et al (2009) Chemiluminescent PEG-PCL micelles for imaging hydrogen peroxide. J Biomed Mater Res A 89(3):561–566

    Google Scholar 

  44. Lee I et al (2009) Detection of hydrogen peroxide in vitro and in vivo using peroxalate chemiluminescent micelles. Bull Korean Chem Soc 32(7):2187

    Google Scholar 

  45. Rui C et al (2011) Chemiluminescent nanomicelles for imaging hydrogen peroxide and self-­therapy in photodynamic therapy. BioMedical Research International 2011:1–9

    Google Scholar 

  46. Keston AS, Brandt R (1965) The fluorometric analysis of ultramicro quantities of hydrogen peroxide. Anal Biochem 11(1):1–5

    Article  CAS  Google Scholar 

  47. Royall J, Ischiropoulos H (1993) Evaluation of 2′, 7′-dichlorofluorescin and dihydrorhodamine 123 as fluorescent probes for intracellular H2O2 in cultured endothelial cells. Arch Biochem Biophys 302(2):348–355

    Article  CAS  Google Scholar 

  48. Votyakova TV, Reynolds IJ (2004) Detection of hydrogen peroxide with Amplex Red: interference by NADH and reduced glutathione auto-oxidation. Arch Biochem Biophys 431(1):138–144

    Article  CAS  Google Scholar 

  49. Kim SH et al (2005) Encapsulation of enzymes within polymer spheres to create optical nanosensors for oxidative stress. Anal Chem 77(21):6828–6833

    Article  CAS  Google Scholar 

  50. Poulsen AK, Scharff-Poulsen AM, Olsen LF (2007) Horseradish peroxidase embedded in polyacrylamide nanoparticles enables optical detection of reactive oxygen species. Anal Biochem 366(1):29–36

    Article  CAS  Google Scholar 

  51. Chang Q et al (2009) Sensitive fluorescent probes for determination of hydrogen peroxide and glucose based on enzyme-immobilized magnetite/silica nanoparticles. Anal Bioanal Chem 395(7):2377–2385

    Article  CAS  Google Scholar 

  52. Kim G et al (2010) Nanoencapsulation method for high selectivity sensing of hydrogen peroxide inside live cells. Anal Chem 82(6):2165–2169

    Article  CAS  Google Scholar 

  53. Afri M, Frimer AA, Cohen Y (2004) Active oxygen chemistry within the liposomal bilayer: Part IV: locating 2′, 7′-dichlorofluorescein (DCF), 2′, 7′-dichlorodihydrofluorescein (DCFH) and 2′, 7′-dichlorodihydrofluorescein diacetate (DCFH-DA) in the lipid bilayer. Chem Phys Lipids 131(1):123–133

    Article  CAS  Google Scholar 

  54. LeBel CP, Ischiropoulos H, Bondy SC (1992) Evaluation of the probe 2′, 7′-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol 5(2):227–231

    Article  CAS  Google Scholar 

  55. King M, Kopelman R (2003) Development of a hydroxyl radical ratiometric nanoprobe. Sens Actuator B Chem 90(1–3):76–81

    Article  CAS  Google Scholar 

  56. Endo T et al (2010) Localized surface plasmon resonance optical characteristics for hydrogen peroxide using polyvinylpyrrolidone coated silver nanoparticles. Mater Lett 64(19):2105–2108

    Article  CAS  Google Scholar 

  57. Endo T, Yanagida Y, Hatsuzawa T (2008) Quantitative determination of hydrogen peroxide using polymer coated Ag nanoparticles. Measurement 41(9):1045–1053

    Article  Google Scholar 

  58. Endo T et al (2008) Stimuli-responsive hydrogel-­silver nanoparticles composite for development of localized surface plasmon resonance-­based optical biosensor. Anal Chim Acta 611(2):205–211

    Article  CAS  Google Scholar 

  59. Endo T et al (2006) Multiple label-free detection of antigen-antibody reaction using ­localized surface plasmon resonance-based core-shell structured nanoparticle layer nanochip. Anal Chem 78(18):6465–6475

    Article  CAS  Google Scholar 

  60. Endo T et al (2005) Label-free detection of peptide nucleic acid-DNA hybridization using localized surface plasmon resonance based optical biosensor. Anal Chem 77(21):6976–6984

    Article  CAS  Google Scholar 

  61. Shiang YC, Huang CC, Chang HT (2009) Gold nanodot-based luminescent sensor for the detection of hydrogen peroxide and glucose. Chem Commun 23:3437–3439

    Article  Google Scholar 

  62. Song C, Pehrsson PE, Zhao W (2005) Recoverable solution reaction of HiPco carbon nanotubes with hydrogen peroxide. J Phys Chem B 109(46):21634–21639

    Article  CAS  Google Scholar 

  63. Xu Y et al (2007) Double-stranded DNA single-­walled carbon nanotube hybrids for optical hydrogen peroxide and glucose sensing. J Phys Chem C 111(24):8638–8643

    Article  CAS  Google Scholar 

  64. Chen W et al (2012) Recent advances in electrochemical sensing for hydrogen peroxide: a review. Analyst 137(1):49–58

    Article  CAS  Google Scholar 

  65. Rad AS et al (2011) A review on glucose and hydrogen peroxide biosensor based on modified electrode included silver nanoparticles. Int J Electrochem Sci 6:3671–3683

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Kim, G., Lee, YE.K., Kopelman, R. (2013). Hydrogen Peroxide (H2O2) Detection with Nanoprobes for Biological Applications: A Mini-review. In: Armstrong, D., Bharali, D. (eds) Oxidative Stress and Nanotechnology. Methods in Molecular Biology, vol 1028. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-475-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-475-3_6

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-474-6

  • Online ISBN: 978-1-62703-475-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics