Skip to main content

Oxidative Biomarkers to Assess the Nanoparticle-Induced Oxidative Stress

  • Protocol
  • First Online:
Oxidative Stress and Nanotechnology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1028))

Abstract

Nanotechnology involves the creation and manipulation of materials at nanoscale levels to create products that exhibit novel properties. Engineered nanomaterials either metals (like carbon and silver) or metal oxides (like zinc oxide, magnesium oxide, and titanium oxide) induce toxicity and oxidative stress by generating free radicals. Various in vitro and in vivo models are available to estimate the oxidative stress induced by the nanoparticles. In this chapter, we describe the methods for the estimation of oxidative stress markers like reactive oxygen species (ROS), DNA damage estimation, and lipid peroxidation products; total antioxidant capacity (TAC) was mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Griendling KK, FitzGerald GA (2003) Oxidative stress and cardiovascular injury: part I: basic mechanisms and in vivo monitoring of ROS. Circulation 108:1912–1916

    Article  Google Scholar 

  2. Hoet PH, Bruske-Hohlfeld I, Salata OV (2004) Nanoparticles—known and unknown health risks. J Nanobiotechnol 1:12–14

    Article  Google Scholar 

  3. Thomas K, Sayre P (2005) Research strategies for safety evaluation of nanomaterials, part I: evaluating the human health implications of exposure to nanoscale materials. Toxicol Sci 2:316–321

    Article  Google Scholar 

  4. Brown DM, Stone V, Findlay P et al (2000) Increased inflammation and intracellular calcium caused by ultrafine carbon black is independent of transition metals or other soluble components. Occupat Environ Med 57:685–691

    Article  CAS  Google Scholar 

  5. Derfus AM, Chan WCW, Bhatia SN et al (2004) Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 4(1):11–18

    Article  CAS  Google Scholar 

  6. Foley S, Crowley C, Smaihi M et al (2002) Cellular localisation of a water-soluble fullerene derivative. Biochem Biophys Res Commun 294(1):116–119

    Article  CAS  Google Scholar 

  7. Oberdorster G, Maynard A, Yang H et al (2005) Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy 1. Part Fibre Toxicol 2(1):8–14

    Article  Google Scholar 

  8. Reddy ARN, Rao MV, Krishan DR et al (2012) Pulmonary toxicity assessment of multi-wall carbon nanotubes in rats following intratracheal instillation. Environ Toxicol 27(4):211–219

    Google Scholar 

  9. Anreddy RNR, Devarakonda RK, Vurimindi H et al (2011) In vitro toxicity of multi wall carbon nanoparticles on Hep G 32 liver cell lines. Lat Am J Pharm 30(1):177–80

    CAS  Google Scholar 

  10. Lam C, James TJ, McClusky R, Hunter LR (2003) Pulmonary toxicity of carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicology 72(S-1):44–48

    Google Scholar 

  11. Hussain SM, Hess KL, Gearhart JM, Geiss KT (2005) In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro 19:975–983

    Article  CAS  Google Scholar 

  12. Anreddy RNR, Yellu NR, Devarakonda RK et al (2010) Multi wall carbon nanoparticles induce oxidative stress and cytotoxicity in human embryonic kidney (HEK293) cells. Toxicology 272:11–16

    Article  Google Scholar 

  13. Reddy ARN, Rao MV, Krishan DR et al (2011) Evaluation of oxidative stress and antioxidant status in rats following exposure of carbon nanotubes. Regul Toxicol Pharmacol 59:251–257

    Article  CAS  Google Scholar 

  14. Reddy ARN, Rao MV, Krishan DR et al (2011) Induction of oxidative stress and cytotoxicity by carbon nanomaterials is dependent on physical properties. Toxicol Ind Health 27:3–10

    Article  CAS  Google Scholar 

  15. Oberdorster E (2004) Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environ Health Perspect 112:1058–1062

    Article  CAS  Google Scholar 

  16. Reddy ARN, Rao MV, Krishan DR et al (2011) Induction of oxidative stress and cytotoxicity by carbon nanomaterials is dependent on physical properties. Toxicol Ind Health 27:3–10

    Article  CAS  Google Scholar 

  17. Wang H, Joseph JA (1999) Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic Biol Med 5–6:612–616

    Article  Google Scholar 

  18. Keston AS, Brandt R (1965) The fluorometric analysis of ultramicro quantities of hydrogen peroxide. Anal Biochem 11:1–5

    Article  CAS  Google Scholar 

  19. Patel PR, Bevan RJ, Mistry N et al (2007) Evidence of oligonucleotides containing 8-hydroxy-2′-deoxyguanosine in human urine. J Free Radic Biol Med 42:552–558

    Article  CAS  Google Scholar 

  20. Shen J, Deininger P, Hunt JD, Zhao H (2007) 8-Hydroxy-2′-deoxyguanosine (8-OH-dG) as a potential survival biomarker in patients with non-small cell lung cancer. Cancer 109(3):574–580

    Article  CAS  Google Scholar 

  21. Dubuisson ML, de Wergifosse B, Trouet A, Baguet F et al (2000) Antioxidative properties of natural coelenterazine and synthetic methyl coelenterazine in rat hepatocytes subjected to tert-butyl hydroperoxide-induced oxidative stress. Biochem Pharmacol 60:471–478

    Article  CAS  Google Scholar 

  22. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  23. Deleve LD, Kaplowitz N (1991) Glutathione metabolism and its role in hepatotoxicity. Pharmacol Ther 52:287–305

    Article  CAS  Google Scholar 

  24. Shaik IH, Mehvar R (2006) Rapid determination of reduced and oxidized glutathione levels using a new thiol-masking reagent and the enzymatic recycling method: application to the rat liver and bile samples. Anal Bioanal Chem 385:105–113

    Article  CAS  Google Scholar 

  25. Cerutti P, Trump B (1991) Inflammation and oxidative stress in carcinogenesis. Proc Cancer Cell 3:1–7

    CAS  Google Scholar 

  26. Trachootham D, Lu W, Ogasawara MA et al (2008) Redox regulation of cell survival. Antioxid Redox Signal 10:1343–1374

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Anreddy, R.N.R., Yellu, N.R., Devarakonda, K.R. (2013). Oxidative Biomarkers to Assess the Nanoparticle-Induced Oxidative Stress. In: Armstrong, D., Bharali, D. (eds) Oxidative Stress and Nanotechnology. Methods in Molecular Biology, vol 1028. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-475-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-475-3_13

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-474-6

  • Online ISBN: 978-1-62703-475-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics