Skip to main content

Testing Nanomaterial Toxicity in Unicellular Eukaryotic Algae and Fish Cell Lines

  • Protocol
  • First Online:
Oxidative Stress and Nanotechnology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1028))

Abstract

Nanoecotoxicology as a sub-discipline of ecotoxicology aims to identify and predict effects elicited on ecosystems by nano-sized materials (NM). Two key groups of model organisms in this context are algae and fish. In this chapter, we present considerations for testing NM with respect to their impact on unicellular algae and cell lines derived from various organs of fish.

Based on currently available literature on NM effects in unicellular algae and fish cell lines, and our own experience, we provide guidance on test design, including principle test considerations, materials, NM presentation to cells, exposure, bioavailability, and effect assessment. Assessment needs to be based on a meaningful choice of exposure scenario(s) related to the research question. As a first step, one needs to address whether effects of NMs are to be investigated under environmentally relevant or probable conditions, which may include processes such as agglomeration, or whether NM effects from mono-dispersed particles are of interest, which may require special steps to ensure stable NM suspension. Moreover, whether effects on cells are to be studied in the short- or long-term is important with regard to experimental design. Preparation of NM suspensions, which can be done in aqueous media different from the exposure medium, is addressed with regard to energy input, sterility (as required for algae and fish cell exposure) and particle purity.

Specified for the two model systems, algae and fish cell lines, availability and choice of culture media are presented and discussed with regard to impact on NM behavior. Light, temperature, and agitation, which are variables during exposure, are discussed. We further provide guidance on the characterization of the NM in the chosen aqueous exposure media regarding size, zeta potential and electrophoretic mobility. The state of NM in exposure media is decisive for their bioavailability and therefore for potential particle effects. Therefore, we present ways of deriving a mass balance and quantitative/qualitative information on the uptake and distribution of NM in cells.

As NM have a high surface-to-volume ratio and possess specific physical-chemical properties, which make them prone to interfere with various compounds and certain types of toxicity tests, potential interferences and appropriate controls are introduced. Furthermore, different types of dose metrics, which is still a strongly debated issue in nanotoxicology, are highlighted. We also consider laboratory safety regarding NM handling and disposal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. European Commission (2012-01-22) http://europa.eu/rapid/pressReleasesAction.do?reference=IP/11/1202&format=HTML&aged=0&language=EN&guiLanguage=en

  2. Jiang J, Oberdörster G, Biswas P (2009) Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J Nanoparticle Res 11:77–89

    Article  CAS  Google Scholar 

  3. Lewis LA, McCourt RM (2004) Green algae and the origin of land plants. Am J Bot 91:1535–1556

    Article  Google Scholar 

  4. Weyers A, Sokull-Klüttgen B, Baraibar-Fentanes J, Vollmer G (2000) Acute toxicity data: a comprehensive comparison of results of fish, daphnia, and algae tests with new substances notified in the European Union. Environ Toxicol Chem 19:1931–1933

    CAS  Google Scholar 

  5. Lee RE (2008) Phycology (4 ed.) Cambridge University Press, Cambridge, UK.

    Google Scholar 

  6. Kneip C, Voss C, Lockhart PJ, Maier UG (2008) The cyanobacterial endosymbiont of the unicellular algae Rhopalodia gibba shows reductive genome evolution. BMC Evol Biol 8:30

    Article  Google Scholar 

  7. Bols NC, Dayeh VR, Lee LEJ, Schirmer K (2005) Use of fish cell lines in the toxicology and ecotoxicology of fish. In: Mommsen TP, Moon TW (eds) Biochemistry and molecular biology of fishes. Elsevier Science, Amsterdam

    Google Scholar 

  8. Schirmer K (2006) Proposal to improve vertebrate cell cultures to establish them as substitutes for the regulatory testing of chemicals and effluents using fish. Toxicology 224:163–183

    Article  CAS  Google Scholar 

  9. Surek B (2008) Meeting report: algal culture collections 2008. An international meeting at the culture collection of algae and protozoa (CCAP), Dunstaffnage Marine Laboratory, Dunbeg, Oban, UK, June 8–11, 2008, Protist 159:509–517.

    Google Scholar 

  10. Gachon CM, Day JG, Campbell CN, Proschold T, Saxon RJ, Kupper FC (2007) The culture collection of algae and protozoa (CCAP): a biological resource for protistan genomics. Gene 406:51–57

    Article  CAS  Google Scholar 

  11. Lee LE, Dayeh VR, Schirmer K, Bols NC (2009) Applications and potential uses of fish gill cell lines: examples with RTgill-W1. In Vitro Cell Dev Biol Anim 45:127–134

    Article  CAS  Google Scholar 

  12. Meissner T, Kuhnel D, Busch W, Oswald S, Richter V, Michaelis A, Schirmer K, Potthoff A (2010) Physical-chemical characterization of tungsten carbide nanoparticles as a basis for toxicological investigations. Nanotoxicology 4:196–206

    Article  CAS  Google Scholar 

  13. Dayeh VR, Schirmer K, Lee LEJ, Bols NC (2005) Rainbow trout gill cell line microplate cytotoxicity test. In: Blaise C, Férard JF (eds) Small-scale freshwater environment toxicity test methods. Kluwer, Norwell, MA, pp 473–503

    Chapter  Google Scholar 

  14. Dayeh VR, Bols NC, Schirmer K, Lee LE (2003) The use of fish-derived cell lines for investigation of environmental contaminants. Curr Protoc Toxicol Chapter 1, Unit1 5.

    Google Scholar 

  15. Losic D, Rosengarten G, Mitchell JG, Voelcker NH (2006) Pore architecture of diatom frustules: potential nanostructured membranes for molecular and particle separations. J Nanosci Nanotechnol 6:982–989

    Article  CAS  Google Scholar 

  16. Naustvoll L-J (1998) Growth and grazing by the thecate heterotrophic dinoflagellate Diplopsalis lenticula (Diplopsalidaceae, Dinophyceae). Phycologia 37:1–9

    Article  Google Scholar 

  17. Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ Sci Technol 43:9216–9222

    Article  CAS  Google Scholar 

  18. Luoma SN (2008) Silver nanotechnologies and the environment: old problems or new challenges? In: Project on emerging nanotechnologies report, PEN 15. Woodrow Wilson Centre, Washington, DC, pp 1–67

    Google Scholar 

  19. Tiede K, Hassellöv M, Breitbarth E, Chaudhry Q, Boxall ABA (2009) Considerations for environmental fate and ecotoxicity testing to support environmental risk assessments for engineered nanoparticles. J Chromatogr A 1216:503–509

    Article  CAS  Google Scholar 

  20. Velzeboer I, Hendriks AJ, Ragas AMJ, van de Meent D (2008) Nanomaterials in the environment aquatic ecotoxicity tests of some nanomaterials. Environ Toxicol Chem 27:1942–1947

    Article  CAS  Google Scholar 

  21. Bouldin JL, Ingle TM, Sengupta A, Alexander R, Hannigan RE, Buchanan RA (2008) Aqueous toxicity and food chain transfer of quantum dots™ in freshwater algae and Ceriodaphnia dubia. Environ Toxicol Chem 27:1958–1963

    Article  CAS  Google Scholar 

  22. Kühnel D, Busch W, Meißner T, Springer A, Potthoff A, Richter V, Gelinsky M, Schirmer K (2009) Agglomeration of tungsten carbide nanoparticles in exposure medium does not prevent uptake and toxicity toward a rainbow trout gill cell line. Aquat Toxicol 93:91–99

    Article  Google Scholar 

  23. Landsiedel R, Ma-Hock L, Kroll A, Hahn D, Schnekenburger J, Wiench K, Wohlleben W (2010) Testing metal-oxide nanomaterials for human safety. Adv Mater 22:2601–2627

    Article  CAS  Google Scholar 

  24. OECD (2011),Test No. 201: Freshwater Alga and Cyanobacteria, Growth Inhibition Test, OECD Guidelines for the Testing of Chemicals, Section 2, OECD Publishing. doi: 10.1787/9789264069923-en

  25. ISO (2012) Water quality—Fresh water algal growth inhibition test with unicellular green algae (ISO 8692:2012). International Organization for Standardization.

    Google Scholar 

  26. German standard methods for the examination of water, waste water and sludge; bio-assays (group L); determining the tolerance of green algae to the toxicity of waste water (Scenedesmus chlorophyll fluorescence test) by way of dilution series (L 33), (DIN 38412-33:1991-03)

    Google Scholar 

  27. Hund-Rinke K, Schlich K, Wenzel A (2010) TiO2 nanoparticles—relationship between dispersion preparation method and ecotoxicity in the algal growth test. Umweltwissenschaften und Schadstoff-Forschung 22:517–528

    Article  CAS  Google Scholar 

  28. Piccapietra F, Sigg L, Behra R (2011) Colloidal stability of carbonate-coated silver nanoparticles in synthetic and natural freshwater. Environ Sci Technol 46:818–825

    Article  Google Scholar 

  29. Hildebrand H, Kühnel D, Potthoff A, Mackenzie K, Springer A, Schirmer K (2009) Evaluating the cytotoxicity of palladium/magnetite nano-catalysts intended for wastewater treatment. Environ Pollut 158:65–73

    Article  Google Scholar 

  30. Schulze C, Kroll A, Lehr CM, Schäfer UF, Becker K, Schnekenburger J, Schulze Isfort C, Landsiedel R, Wohleben W (2008) Not ready to use—overcoming pitfalls when dispersing nanoparticles in physiological media. Nanotoxicology 2:51–61

    Article  CAS  Google Scholar 

  31. Hull MS, Kennedy AJ, Steevens JA, Bednar AJ, Weiss JCA, Vikesland PJ (2009) Release of metal impurities from carbon nanomaterials influences aquatic toxicity. Environ Sci Technol 43:4169–4174

    Article  CAS  Google Scholar 

  32. Sharma V, Shukla RK, Saxena N, Parmar D, Das M, Dhawan A (2009) DNA damaging potential of zinc oxide nanoparticles in human epidermal cells. Toxicol Lett 185:211–218

    Article  CAS  Google Scholar 

  33. Van Hoecke K, De Schamphelaere KAC, Van der Meeren P, Smagghe G, Janssen CR (2011) Aggregation and ecotoxicity of CeO2 nanoparticles in synthetic and natural waters with variable pH, organic matter concentration and ionic strength. Environ Pollut 159:970–976

    Article  Google Scholar 

  34. Slaveykova VI, Startchev K (2009) Effect of natural organic matter and green microalga on carboxyl-polyethylene glycol coated CdSe/ZnS quantum dots stability and transformations under freshwater conditions. Environ Pollut 157:3445–3450

    Article  CAS  Google Scholar 

  35. Odzak N, Behra R, Sigg L (2013) Dissolution of metal and metal oxide nanoparticles in aqueous media. Manuscript in preparation.

    Google Scholar 

  36. Kent RD, Vikesland PJ (2012) Controlled evaluation of silver nanoparticle dissolution using atomic force microscopy. Environ Sci Technol 46(13):6977–6984

    Google Scholar 

  37. Navarro E, Piccapietra F, Wagner B, Marconi F, Kaegi R, Odzak N, Sigg L, Behra R (2008) Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ Sci Technol 42:8959–8964

    Article  CAS  Google Scholar 

  38. Deguchi S, Yamazaki T, Mukai SA, Usami R, Horikoshi K (2007) Stabilization of C(60) nanoparticles by protein adsorption and its implications for toxicity studies. Chem Res Toxicol 20:854–858

    Article  CAS  Google Scholar 

  39. Schirmer K, Chan AG, Greenberg BM, Dixon DG, Bols NC (1997) Methodology for demonstrating and measuring the photocytotoxicity of fluoranthene to fish cells in culture. Toxicol In Vitro 11:107–119

    Article  CAS  Google Scholar 

  40. Rogers NJ, Franklin NM, Apte SC, Batley GE, Angel BM, Lead JR, Baalousha M (2010) Physico-chemical behaviour and algal toxicity of nanoparticulate CeO2 in freshwater. Environ Chem 7:50–60

    Article  CAS  Google Scholar 

  41. Ma H, Kabengi NJ, Bertsch PM, Unrine JM, Glenn TC, Williams PL (2011) Comparative phototoxicity of nanoparticulate and bulk ZnO to a free-living nematode Caenorhabditis elegans: the importance of illumination mode and primary particle size. Environ Pollut 159:1473–1480

    Article  CAS  Google Scholar 

  42. Hund-Rinke K, Simon M (2006) Ecotoxic Effect of Photocatalytic Active Nanoparticles (TiO2) on Algae and Daphnids. Environ Sci Pollut Res 13:225–232

    Article  CAS  Google Scholar 

  43. Schwab F, Bucheli TD, Lukhele LP, Magrez A, Nowack B, Sigg L, Knauer K (2011) Are Carbon Nanotube Effects on Green Algae Caused by Shading and Agglomeration? Environ Sci Technol 45:6136–6144

    Article  CAS  Google Scholar 

  44. Laycock NL, Schirmer K, Bols NC, Sivak JG (2000) Optical properties of rainbow trout lenses after in vitro exposure to polycyclic aromatic hydrocarbons in the presence or absence of ultraviolet radiation. Exp Eye Res 70:205–214

    Article  CAS  Google Scholar 

  45. Schirmer K, Chan AG, Greenberg BM, Dixon DG, Bols NC (1998) Ability of 16 priority PAHs to be photocytotoxic to a cell line from the rainbow trout gill. Toxicology 127:143–155

    Article  CAS  Google Scholar 

  46. Hassellöv M, Readman J, Ranville J, Tiede K (2008) Nanoparticle analysis and characterization methodologies in environmental risk assessment of engineered nanoparticles. Ecotoxicology 17:344–361

    Article  Google Scholar 

  47. Peng X, Palma S, Fisher NS, Wong SS (2011) Effect of morphology of ZnO nanostructures on their toxicity to marine algae. Aquatic Toxicology 102:186–196

    Article  CAS  Google Scholar 

  48. Xu M, Deng G, Liu S, Chen S, Cui D, Yang L, Wang Q (2010) Free cadmium ions released from CdTe-based nanoparticles and their cytotoxicity on Phaeodactylum tricornutum. Metallomics 2:469–473

    Article  CAS  Google Scholar 

  49. Tsai S-W, Chen Y-Y, Liaw J-W (2008) Compound Cellular Imaging of Laser Scanning Confocal Microscopy by Using Gold Nanoparticles and Dyes. Sensors 8:2306–2316

    Article  CAS  Google Scholar 

  50. Nestler H, Groh KJ, Schonenberger R, Behra R, Schirmer K, Eggen RI, Suter MJ (2012) Multiple-endpoint assay provides a detailed mechanistic view of responses to herbicide exposure in Chlamydomonas reinhardtii. Aquat Toxicol 110–111:214–224

    Article  Google Scholar 

  51. Szivák I, Behra R, Sigg L (2009) Metal-induced reactive oxygen species production in chlamydomonas reinhardtii (Chlorophyceae)1. J Phycol 45:427–435

    Article  Google Scholar 

  52. Kroll A, Pillukat MH, Hahn D, Schnekenburger J (2012) Interference of engineered nanoparticles with in vitro toxicity assays, Arch Tox 86(7):1123–1136

    Google Scholar 

  53. European Commission Joint Research Centre. (2012-01-22). http://ihcp.jrc.ec.europa.eu/our_activities/nanotechnology/nanomaterials-repository

  54. Miao A-J, Schwehr KA, Xu C, Zhang S-J, Luo Z, Quigg A, Santschi PH (2009) The algal toxicity of silver engineered nanoparticles and detoxification by exopolymeric substances. Environ Pollut 157:3034–3041

    Article  CAS  Google Scholar 

  55. Renault S, Baudrimont M, Mesmer-Dudons N, Gonzalez P, Mornet S, Brisson A (2008) Impacts of gold nanoparticle exposure on two freshwater species: a phytoplanktonic alga (Scenedesmus subspicatus) and a benthic bivalve (Corbicula fluminea). Gold Bull 41:116–126

    Article  CAS  Google Scholar 

  56. Baun A, Sørensen SN, Rasmussen RF, Hartmann NB, Koch CB (2008) Toxicity and bioaccumulation of xenobiotic organic compounds in the presence of aqueous suspensions of aggregates of nano-C60. Aquat Toxicol 86:379–387

    Article  CAS  Google Scholar 

  57. Rodea-Palomares I, Boltes K, Fernández-Piñas F, Leganés F, García-Calvo E, Santiago J, Rosal R (2011) Physicochemical characterization and ecotoxicological assessment of CeO2 nanoparticles using two aquatic microorganisms. Toxicol Sci 119:135–145

    Article  CAS  Google Scholar 

  58. Van Hoecke K, Quik JTK, Mankiewicz-Boczek J, Schamphelaere KACD, Elsaesser A, Meeren PVD, Barnes C, McKerr G, Howard CV, Meent DVD, Rydzyński K, Dawson KA, Salvati A, Lesniak A, Lynch I, Silversmit G, Samber BRD, Vincze L, Janssen CR (2009) Fate and effects of CeO2 nanoparticles in aquatic ecotoxicity tests. Environ Sci Technol 43:4537–4546

    Article  Google Scholar 

  59. Blaise C, Gagné F, Férard JF, Eullaffroy P (2008) Ecotoxicity of selected nano-materials to aquatic organisms. Environ Toxicol 23:591–598

    Article  CAS  Google Scholar 

  60. Aruoja V, Dubourguier H-C, Kasemets K, Kahru A (2009) Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Sci Total Environ 407:1461–1468

    Article  CAS  Google Scholar 

  61. Saison C, Perreault F, Daigle J-C, Fortin C, Claverie J, Morin M, Popovic R (2010) Effect of core–shell copper oxide nanoparticles on cell culture morphology and photosynthesis (photosystem II energy distribution) in the green alga, Chlamydomonas reinhardtii. Aquat Toxicol 96:109–114

    Article  CAS  Google Scholar 

  62. Li M, Czymmek KJ, Huang CP (2011) Responses of Ceriodaphnia dubia to TiO2 and Al2O3 nanoparticles: a dynamic nano-toxicity assessment of energy budget distribution. J Hazardous Mater 187:502–508

    Article  CAS  Google Scholar 

  63. Wei L, Thakkar M, Chen Y, Ntim SA, Mitra S, Zhang X (2010) Cytotoxicity effects of water dispersible oxidized multiwalled carbon nanotubes on marine alga, Dunaliella tertiolecta. Aquat Toxicol 100:194–201

    Article  CAS  Google Scholar 

  64. Naha PC, Bhattacharya K, Tenuta T, Dawson KA, Lynch I, Gracia A, Lyng FM, Byrne HJ (2010) Intracellular localisation, geno- and cytotoxic response of polyN-isopropylacrylamide (PNIPAM) nanoparticles to human keratinocyte (HaCaT) and colon cells (SW 480). Toxicol Lett 198:134–143

    Article  CAS  Google Scholar 

  65. Wang J, Zhang X, Chen Y, Sommerfeld M, Hu Q (2008) Toxicity assessment of manufactured nanomaterials using the unicellular green alga Chlamydomonas reinhardtii. Chemosphere 73:1121–1128

    Article  CAS  Google Scholar 

  66. Fujiwara K, Suematsu H, Kiyomiya E, Aoki M, Sato M, Moritoki N (2008) Size-dependent toxicity of silica nano-particles to Chlorella kessleri. J Environ Sci Health Part A 43:1167–1173

    Article  CAS  Google Scholar 

  67. Van Hoecke K, De Schamphelaere KAC, Van der Meeren P, Lcucas S, Janssen CR (2008) Ecotoxicity of silica nanoparticles to the green alga pseudokirchneriella subcapitata: importance of surface area. Environ Toxicol Chem 27:1948–1957

    Article  Google Scholar 

  68. Cherchi C, Chernenko T, Diem M, Gu AZ (2011) Impact of nano titanium dioxide exposure on cellular structure of Anabaena variabilis and evidence of internalization. Environ Toxicol Chem 30:861–869

    Article  CAS  Google Scholar 

  69. Miller RJ, Lenihan HS, Muller EB, Tseng N, Hanna SK, Keller AA (2010) Impacts of metal oxide nanoparticles on marine phytoplankton. Environ Sci Technol 44:7329–7334

    Article  CAS  Google Scholar 

  70. Hall S, Bradley T, Moore JT, Kuykindall T, Minella L (2009) Acute and chronic toxicity of nano-scale TiO2 particles to freshwater fish, cladocerans, and green algae, and effects of organic and inorganic substrate on TiO2 toxicity. Nanotoxicology 3:91–97

    Article  CAS  Google Scholar 

  71. Rodríguez-González V, Alfaro SO, Torres-Martínez LM, Cho S-H, Lee S-W (2010) Silver–TiO2 nanocomposites: synthesis and harmful algae bloom UV-photoelimination. Appl Catal B: Environ 98:229–234

    Article  Google Scholar 

  72. Warheit DB, Hoke RA, Finlay C, Donner EM, Reed KL, Sayes CM (2007) Development of a base set of toxicity tests using ultrafine TiO2 particles as a component of nanoparticle risk management. Toxicol Lett 171:99–110

    Article  CAS  Google Scholar 

  73. Franklin NM, Rogers NJ, Apte SC, Batley GE, Gadd GE, Casey PS (2007) Comparative toxicity of nanoparticulate ZnO, Bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environ Sci Technol 41:8484–8490

    Article  CAS  Google Scholar 

  74. Miao A-J, Zhang X-Y, Luo Z, Chen C-S, Chin W-C, Santschi PH, Quigg A (2010) Zinc oxide-engineered nanoparticles: dissolution and toxicity to marine phytoplankton. Environ Toxicol Chem 29:2814–2822

    Article  CAS  Google Scholar 

  75. Wise JP Sr, Goodale BC, Wise SS, Craig GA, Pongan AF, Walter RB, Thompson WD, Ng AK, Aboueissa AM, Mitani H, Spalding MJ, Mason MD (2010) Silver nanospheres are cytotoxic and genotoxic to fish cells. Aquat Toxicol 97:34–41

    Article  CAS  Google Scholar 

  76. Hondroulis E, Liu C, Li CZ (2010) Whole cell based electrical impedance sensing approach for a rapid nanotoxicity assay. Nanotechnology 21:315103

    Article  Google Scholar 

  77. George S, Lin S, Ji Z, Thomas CR, Li L, Mecklenburg M, Meng H, Wang X, Zhang H, Xia T, Hohman JN, Lin S, Zink JI, Weiss PS, Nel AE (2012) Surface defects on plate-shaped silver nanoparticles contribute to its hazard potential in a fish gill cell line and Zebrafish embryos. ACS Nano 6(5):3745–3759

    Article  CAS  Google Scholar 

  78. Van Hoecke K, De Schamphelaere KA, Ali Z, Zhang F, Elsaesser A, Rivera-Gil P, Parak WJ, Smagghe G, Howard CV, Janssen CR (2013) Ecotoxicity and uptake of polymer coated gold nanoparticles. Nanotoxicology 7(1):37–47

    Google Scholar 

  79. Naha PC, Casey A, Tenuta T, Lynch I, Dawson KA, Byrne HJ, Davoren M (2009) Preparation, characterization of NIPAM and NIPAM/BAM copolymer nanoparticles and their acute toxicity testing using an aquatic test battery. Aquat Toxicol 92:146–154

    Article  CAS  Google Scholar 

  80. Reeves JF, Davies SJ, Dodd NJ, Jha AN (2008) Hydroxyl radicals (OH) are associated with titanium dioxide (TiO(2)) nanoparticle-induced cytotoxicity and oxidative DNA damage in fish cells. Mutat Res 640:113–122

    Article  CAS  Google Scholar 

  81. Vevers WF, Jha AN (2008) Genotoxic and cytotoxic potential of titanium dioxide (TiO2) nanoparticles on fish cells in vitro. Ecotoxicology 17:410–420

    Article  CAS  Google Scholar 

  82. Fernández-Cruz ML, Lammel L, Connolly M, Conde E, Barrado AI, Derick S, Perez Y, Fernandez M, Furger C, Navas JM (2012) Comparative cytotoxicity induced by bulk and nanoparticulated ZnO in the fish and human hepatoma cell lines PLHC-1 and Hep G2 Nanotoxicology early online 1–18.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Kroll, A., Kühnel, D., Schirmer, K. (2013). Testing Nanomaterial Toxicity in Unicellular Eukaryotic Algae and Fish Cell Lines. In: Armstrong, D., Bharali, D. (eds) Oxidative Stress and Nanotechnology. Methods in Molecular Biology, vol 1028. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-475-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-475-3_11

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-474-6

  • Online ISBN: 978-1-62703-475-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics