Skip to main content

Amino Acid Mediated Linear Assembly of Au Nanomaterials

  • Protocol
  • First Online:
Book cover NanoBiotechnology Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1026))

Abstract

Nanoparticles possess unique properties that are enhanced due to their small size and varied shapes. These properties can be directly manipulated by controlling the aggregation state, which can further be exploited for applications in bio/chemical sensing, plasmonics, and as supports for catalysts. While the advantages of controlled aggregates of nanomaterials are great, synthetic strategies to achieve such structures with precision over the final arrangement of the materials in three-dimensional space remain limited. We have shown that ligand exchange reactions on Au nanomaterials of various shapes using simple amino acids can induce the formation of linear aggregates of the materials. The assembly process is mediated by partial ligand exchange on the particle surface, followed by the surface segregation of the two ligands that produces an electric dipole across the nanomaterial from which alignment occurs in solution via dipole–dipole interactions. This linear-based assembly can be used to tune the optical properties of the materials and could represent new pathways to study the interactions between biological molecules and inorganic nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jain PK, Eustis S, El-Sayed MA (2006) Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model. J Phys Chem B 110:18243

    Article  CAS  Google Scholar 

  2. Jain PK, Huang X, El-Sayed IH, El-Sayed MA (2008) Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res 41:1578

    Article  CAS  Google Scholar 

  3. Rosi NL, Giljohann DA, Thaxton CS, Lytton-Jean AKR, Han MS, Mirkin CA (2006) Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science 312:1027

    Article  CAS  Google Scholar 

  4. Daniel M-C, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293

    Article  CAS  Google Scholar 

  5. Murphy CJ, Gole AM, Hunyadi SE, Stone JW, Sisco PN, Alkilany A, Kinard BE, Hankins P (2008) Chemical sensing and imaging with metallic nanorods. Chem Commun 544

    Google Scholar 

  6. Templeton AC, Wuelfing WP, Murray RW (2000) Monolayer-protected cluster molecules. Acc Chem Res 33:27

    Article  CAS  Google Scholar 

  7. Rosi NL, Mirkin CA (2005) Nanostructures in biodiagnostics. Chem Rev 105:1547

    Article  CAS  Google Scholar 

  8. Slocik JM, Naik RR (1988) Biologically programmed synthesis of bimetallic nanostructures. Adv Mater 2006:18

    Google Scholar 

  9. Pacardo DB, Sethi M, Jones SE, Naik RR, Knecht MR (2009) Biomimetic synthesis of Pd nanocatalysts for the stille coupling reaction. ACS Nano 3:1288

    Article  CAS  Google Scholar 

  10. Slocik JM, Govorov AO, Naik RR (2008) Photoactivated biotemplated nanoparticles as an enzyme mimic. Angew Chem Int Ed 47:5335

    Article  CAS  Google Scholar 

  11. Slocik JM, Zabinsky JS, Phillips DM, Naik RR (2008) Colorimetric response of peptide-functionalized gold nanoparticles to metal ions. Small 4:548

    Article  CAS  Google Scholar 

  12. Knecht MR, Sethi M (2009) Bio-inspired colorimetric detection of Hg2+ and Pb2+ heavy metal ions using Au nanoparticles. Anal Bioanal Chem 394:33

    Article  CAS  Google Scholar 

  13. Nam KT, Kim D-W, Yoo PJ, Chiang C-Y, Meethong N, Hammond PT, Chiang Y-M, Belcher AM (2006) Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science 312:885

    Article  CAS  Google Scholar 

  14. Huo F, Lytton-Jean AKR, Mirkin CA (2006) Asymmetric functionalization of nanoparticles based on thermally addressable DNA interconnects. Adv Mater 18:2304

    Article  CAS  Google Scholar 

  15. Xu X, Rosi NL, Wang Y, Huo F, Mirkin CA (2006) Asymmetric functionalization of gold nanoparticles with oligonucleotides. J Am Chem Soc 128:9286

    Article  CAS  Google Scholar 

  16. Sethi M, Joung G, Knecht MR (2009) Linear assembly of Au nanorods using biomimetic ligands. Langmuir 25:1572

    Article  CAS  Google Scholar 

  17. Sethi M, Knecht MR (2009) Experimental studies on the interactions between Au nanoparticles and amino acids: bio-based formation of branched linear chains. ACS Appl Mater Interfaces 1:1270

    Article  CAS  Google Scholar 

  18. Sethi M, Knecht MR (2010) Understanding the mechanism of amino acid-based Au nanoparticle chain formulation. Langmuir 26:9860

    Article  CAS  Google Scholar 

  19. Caswell KK, Wilson JN, Bunz UHF, Murphy CJ (2003) Preferential end-to-end assembly of gold nanorods by biotin-streptavidin ­connectors. J Am Chem Soc 125:13914

    Article  CAS  Google Scholar 

  20. Sau TK, Murphy CJ (2004) Seeded high yield synthesis of short Au nanorods in aqueous solution. Langmuir 20:6414

    Article  CAS  Google Scholar 

  21. Lee J-S, Stoeva SI, Mirkin CA (2006) DNA-induced size-selective separation of mixtures of gold nanoparticles. J Am Chem Soc 128:8899

    Article  CAS  Google Scholar 

  22. Smith DK, Korgel BA (2008) The importance of the CTAB surfactant on the colloidal seed-mediated synthesis of gold nanorods. Langmuir 24:644

    Article  CAS  Google Scholar 

  23. Smith DK, Miller NR, Korgel BA (2009) Iodide in CTAB prevents gold nanorod formation. Langmuir 25:9518

    Article  CAS  Google Scholar 

  24. Sethi M, Joung G, Knecht MR (2009) Stability and electrostatic assembly of Au nanorods for use in biological assays. Langmuir 25:317

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the National Science Foundation, American Chemical Society—Petroleum Research Fund, and the University of Kentucky for financial support. The authors also wish to acknowledge the UK Electron Microscopy Center for assistance with the TEM analysis and Dr. T. Dziubla, UK Department of Chemical and Materials Engineering, for assistance with the DLS analysis. M.S. acknowledges student financial support from the Research Challenge Trust Fund and the University of Kentucky Presidential Fellowship.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Sethi, M., Knecht, M.R. (2013). Amino Acid Mediated Linear Assembly of Au Nanomaterials. In: Rosenthal, S., Wright, D. (eds) NanoBiotechnology Protocols. Methods in Molecular Biology, vol 1026. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-468-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-468-5_12

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-467-8

  • Online ISBN: 978-1-62703-468-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics