Skip to main content

Methods for Measuring Class I Membrane-Bound Hyaluronan Synthase Activity

  • Protocol
  • First Online:
Book cover Glycosyltransferases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1022))

Abstract

Detecting and quantifying hyaluronan (HA) made by Class I HA synthase (HAS) and determining the level of activity of these membrane-bound enzymes is critical in studies to understand the normal biology of HA and how changes in HAS activity and HA levels or size are important in inflammatory and other diseases, tumorigenesis, and metastasis. Unlike the products made by the vast majority of glycosyltransferases, HA products are more complicated since they are made as a heterogeneous population of sizes spanning a broad mass range. Three radioactive and nonradioactive assay methods are described that can give the amount of HA made with or without information about the distribution of product sizes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fosang AJ, Hey NJ, Carney SL, Hardingham TE (1990) An ELISA plate based assay for hyaluronan using biotinylated proteoglycan G1 domain (HA-binding region). Matrix 10:306–313

    Article  PubMed  CAS  Google Scholar 

  2. Itano N, Sawai T, Yoshida M, Lenas P, Yamada Y, Imagawa M, Shinomura T, Hamaguchi M, Yoshida Y, Ohnuki Y, Miyauchi S, Spicer AP, McDonald JA, Kimata K (1999) Three isoforms of mammalian hyaluronan synthases have distinct enzymatic properties. J Biol Chem 274:25085–25092

    Article  PubMed  CAS  Google Scholar 

  3. Brinck J, Heldin P (1999) Expression of recombinant hyaluronan synthase (HAS) isoforms in CHO cells reduces cell migration and cell surface CD44. Exp Cell Res 252:342–351

    Article  PubMed  CAS  Google Scholar 

  4. Itano N, Kimata K (2002) Mammalian hyaluronan synthases. IUBMB Life 54:195–199

    Article  PubMed  CAS  Google Scholar 

  5. Spicer AP (2001) In vitro assays for hyaluronan synthase. Methods Mol Biol 171:373–382

    PubMed  CAS  Google Scholar 

  6. Weigel PH (2002) Functional characteristics and catalytic mechanisms of the bacterial hyaluronan synthases. IUBMB Life 54:201–210

    Article  PubMed  CAS  Google Scholar 

  7. Tlapak-Simmons VL, Baggenstoss BA, Clyne T, Weigel PH (1999) Purification and lipid dependence of the recombinant hyaluronan synthases from Streptococcus pyogenes and Streptococcus equisimilis. J Biol Chem 274:4239–4245

    Article  PubMed  CAS  Google Scholar 

  8. Yoshida M, Itano N, Yamada Y, Kimata K (2000) In vitro synthesis of hyaluronan by a single protein derived from mouse HAS1 gene and characterization of amino acid residues essential for the activity. J Biol Chem 275:497–506

    Article  PubMed  CAS  Google Scholar 

  9. DeAngelis PL, Oatman LC, Gay DF (2003) Rapid chemoenzymatic synthesis of monodisperse hyaluronan oligosaccharides with immobilized enzyme reactors. J Biol Chem 278:35199–35203

    Article  PubMed  CAS  Google Scholar 

  10. Weigel PH, DeAngelis PL (2007) Hyaluronan synthases: a decade-plus of novel glycosyltransferases. J Biol Chem 282:36777–36781

    Article  PubMed  CAS  Google Scholar 

  11. Prehm P (1983) Synthesis of hyaluronate in differentiated teratocarcinoma cells. Characterization of the synthase. Biochem J 211:181–189

    PubMed  CAS  Google Scholar 

  12. Sheehan JK, Arundel C, Phelps CF (1983) Effect of the cations sodium, potassium, and calcium on the interactions of hyaluronate chains: a light scattering and viscometric study. Int J Biol Macromol 5:222–228

    Article  CAS  Google Scholar 

  13. Lee HG, Cowman MK (1994) An agarose gel electrophoretic method for analysis of hyaluronan molecular weight distribution. Anal Biochem 219:278–287

    Article  PubMed  CAS  Google Scholar 

  14. Prehm P (1983) Synthesis of hyaluronate in differentiated teratocarcinoma cells. Mechanism of chain growth. Biochem J 211:191–198

    PubMed  CAS  Google Scholar 

  15. Wyatt PJ (1997) Multiangle light scattering combined with HPLC. LCGC 15:160–168

    CAS  Google Scholar 

  16. Wyatt PJ (1993) Light scattering and the absolute characterization of macromolecules. Anal Chim Acta 272:1–40

    Article  CAS  Google Scholar 

  17. Tlapak-Simmons VL, Kempner ES, Baggenstoss BA, Weigel PH (1998) The active streptococcal hyaluronan synthases (HASs) contain a single HAS monomer and multiple cardiolipin molecules. J Biol Chem 273:26100–26109

    Article  PubMed  CAS  Google Scholar 

  18. Pettaway CA, Pathak S, Greene G, Ramirez E, Wilson MR, Killion JJ, Fidler IJ (1996) Selection of highly metastatic variants of different human prostatic carcinomas using orthotopic implantation in nude mice. Clin Cancer Res 2:1627–1636

    PubMed  CAS  Google Scholar 

  19. Kumari K, Tlapak-Simmons VL, Baggenstoss BA, Weigel PH (2002) The streptococcal hyaluronan synthases are inhibited by sulfhydryl modifying reagents but conserved cysteine residues are not essential for enzyme function. J Biol Chem 277:13943–13951

    Article  PubMed  CAS  Google Scholar 

  20. Tlapak-Simmons VL, Baggenstoss BA, Kumari K, Heldermon C, Weigel PH (1999) Kinetic characterization of the recombinant hyaluronan synthases from Streptococcus pyogenes and Streptococcus equisimilis. J Biol Chem 274:4246–4253

    Article  PubMed  CAS  Google Scholar 

  21. Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509

    PubMed  CAS  Google Scholar 

  22. Ghosh S, Khobal I, Zanette D, Reed WF (1993) Conformational contraction and hydrolysis of hyaluronate in sodium hydroxide solutions. Macromolecules 26:4684–4691

    Article  Google Scholar 

  23. Tlapak-Simmons VL, Baron CA, Weigel PH (2004) Characterization of the purified hyaluronan synthase from Streptococcus equisimilis. Biochemistry 43:9234–9242

    Article  PubMed  CAS  Google Scholar 

  24. Baggenstoss BA, Weigel PH (2006) Size exclusion chromatography-multiangle laser light scattering analysis of hyaluronan size distributions made by membrane-bound hyaluronan synthase. Anal Biochem 352:243–251

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Weigel, P.H., Padgett-McCue, A.J., Baggenstoss, B.A. (2013). Methods for Measuring Class I Membrane-Bound Hyaluronan Synthase Activity. In: Brockhausen, I. (eds) Glycosyltransferases. Methods in Molecular Biology, vol 1022. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-465-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-465-4_18

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-464-7

  • Online ISBN: 978-1-62703-465-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics