Skip to main content

In Vitro O-Antigen Ligase Assay

  • Protocol
  • First Online:
Glycosyltransferases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1022))

Abstract

WaaL is a membrane enzyme that catalyzes the glycosidic bonding of a sugar at the proximal end of the undecaprenyl-diphosphate (Und-PP)-O-antigen with a terminal sugar of the lipid A-core oligosaccharide (OS). This is a critical step in lipopolysaccharide synthesis. We describe here an assay to perform the ligation reaction in vitro utilizing native substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Raetz CRH, Whitfield C (2002) Lipopolysaccharide endotoxins. Annu Rev Biochem 71:635–700

    Article  PubMed  CAS  Google Scholar 

  2. Opal SM (2007) The host response to endotoxin, antilipopolysaccharide strategies, and the management of severe sepsis. Int J Med Microbiol 297:365–377

    Article  PubMed  CAS  Google Scholar 

  3. Duerr CU, Zenk SF, Chassin C, Pott J, Gutle D, Hensel M, Hornef MW (2009) O-antigen delays lipopolysaccharide recognition and impairs antibacterial host defense in murine intestinal epithelial cells. PLoS Pathog 5:e1000567

    Article  PubMed  Google Scholar 

  4. Murray GL, Attridge SR, Morona R (2003) Regulation of Salmonella typhimurium lipopolysaccharide O antigen chain length is required for virulence; identification of FepE as a second Wzz. Mol Microbiol 47:1395–1406

    Article  PubMed  CAS  Google Scholar 

  5. Murray GL, Attridge SR, Morona R (2006) Altering the length of the lipopolysaccharide O antigen has an impact on the interaction of Salmonella enterica serovar Typhimurium with macrophages and complement. J Bacteriol 188:2735–2739

    Article  PubMed  CAS  Google Scholar 

  6. Saldías MS, Ortega X, Valvano MA (2009) Burkholderia cenocepacia O antigen lipopolysaccharide prevents phagocytosis by macrophages and adhesion to epithelial cells. J Med Microbiol 58:1542–1548

    Article  PubMed  Google Scholar 

  7. Paixao TA, Roux CM, den Hartigh AB, Sankaran-­Walters S, Dandekar S, Santos RL, Tsolis RM (2009) Establishment of systemic Brucella melitensis infection through the digestive tract requires urease, the type IV secretion system, and lipopolysaccharide O antigen. Infect Immun 77:4197–4208

    Article  PubMed  CAS  Google Scholar 

  8. Bengoechea JA, Najdenski H, Skurnik M (2004) Lipopolysaccharide O antigen status of Yersinia enterocolitica O:8 is essential for virulence and absence of O antigen affects the expression of other Yersinia virulence factors. Mol Microbiol 52:451–469

    Article  PubMed  CAS  Google Scholar 

  9. West NP, Sansonetti P, Mounier J, Exley RM, Parsot C, Guadagnini S, Prevost MC, Prochnicka-­Chalufour A, Delepierre M, Tanguy M, Tang CM (2005) Optimization of virulence functions through glucosylation of Shigella LPS. Science 307:1313–1317

    Article  PubMed  CAS  Google Scholar 

  10. Valvano MA (2011) Common themes in glycoconjugate assembly using the biogenesis of O-antigen lipopolysaccharide as a model system. Biochemistry (Mosc) 76:729–735

    Article  CAS  Google Scholar 

  11. McGrath BC, Osborn MJ (1991) Localization of the terminal steps of O-antigen synthesis in Salmonella typhimurium. J Bacteriol 173:649–654

    PubMed  CAS  Google Scholar 

  12. Valvano MA, Furlong SE, Patel KA (2011) Genetics, biosynthesis and assembly of O antigen. In: Knirel Y, Valvano MA (eds) Bacterial lipopolysaccharides: structure, chemical synthesis, biogenesis and interaction with host cells. Springer, Vienna, Austria, pH 275–310

    Chapter  Google Scholar 

  13. Mulford CA, Osborn MJ (1983) An intermediate step in translocation of lipopolysaccharide to the outer membrane of Salmonella typhimurium. Proc Natl Acad Sci USA 80:1159–1163

    Article  PubMed  CAS  Google Scholar 

  14. Abeyrathne P, Daniels C, Poon KK, Matewish MJ, Lam J (2005) Functional characterization of WaaL, a ligase associated with linking O-antigen polysaccharide to the core of Pseudomonas aeruginosa lipopolysaccharide. J Bacteriol 187:3002–3012

    Article  PubMed  CAS  Google Scholar 

  15. Heinrichs DE, Monteiro MA, Perry MB, Whitfield C (1998) The assembly system for the lipopolysaccharide R2 core-type of Escherichia coli is a hybrid of those found in Escherichia coli K-12 and Salmonella enterica. Structure and function of the R2 WaaK and WaaL homologs. J Biol Chem 273:8849–8859

    Article  PubMed  CAS  Google Scholar 

  16. Heinrichs DE, Yethon JA, Amor PA, Whitfield C (1998) The assembly system for the outer core portion of R1- and R4-type lipopolysaccharides of Escherichia coli. The R1 core-specific β-glucosyltransferase provides a novel attachment site for O-polysaccharides. J Biol Chem 273:29497–29505

    Article  PubMed  CAS  Google Scholar 

  17. Schild S, Lamprecht AK, Reidl J (2005) Molecular and functional characterization of O antigen transfer in Vibrio cholerae. J Biol Chem 280:25936–25947

    Article  PubMed  CAS  Google Scholar 

  18. Kaniuk NA, Vinogradov E, Whitfield C (2004) Investigation of the structural requirements in the lipopolysaccharide core acceptor for ligation of O antigens in the genus Salmonella: WaaL “ligase” is not the sole determinant of acceptor specificity. J Biol Chem 279:36470–36480

    Article  PubMed  CAS  Google Scholar 

  19. Olsthoorn MM, Petersen BO, Schlecht S, Haverkamp J, Bock K, Thomas-Oates JE, Holst O (1998) Identification of a novel core type in Salmonella lipopolysaccharide. Complete structural analysis of the core region of the ­lipopolysaccharide from Salmonella enterica sv. Arizonae O62. J Biol Chem 273:3817–3829

    Article  PubMed  CAS  Google Scholar 

  20. Heinrichs DE, Valvano MA, Whitfield C (1999) Biosynthesis and genetics of lipopolysaccharide core. In: Brade H, Morrison DC, Vogel S, Opal S (eds) Endotoxin in health and disease. Marcel Dekker, New York, pH 305–330

    Google Scholar 

  21. Meredith TC, Mamat U, Kaczynski Z, Lindner B, Holst O, Woodard RW (2007) Modification of lipopolysaccharide with colanic acid (M-antigen) repeats in Escherichia coli. J Biol Chem 282:7790–7798

    Article  PubMed  CAS  Google Scholar 

  22. Sperandeo P, Lau FK, Carpentieri A, De Castro C, Molinaro A, Dehò G, Silhavy TJ, Polissi A (2008) Functional analysis of the protein machinery required for transport of lipopolysaccharide to the outer membrane of Escherichia coli. J Bacteriol 190:4460–4469

    Article  PubMed  CAS  Google Scholar 

  23. Barr K, Klena J, Rick PD (1999) The modality of enterobacterial common antigen polysaccharide chain lengths is regulated by o349 of the wec gene cluster of Escherichia coli K-12. J Bacteriol 181:6564–6568

    PubMed  CAS  Google Scholar 

  24. Pérez JM, McGarry MA, Marolda CL, Valvano MA (2008) Functional analysis of the large periplasmic loop of the Escherichia coli K-12 WaaL O-antigen ligase. Mol Microbiol 70:1424–1440

    Article  PubMed  Google Scholar 

  25. Islam ST, Taylor VL, Qi M, Lam JS (2010) Membrane tpology mapping of the O-antigen flippase (Wzx), polymerase (Wzy), and ligase (WaaL) from Pseudomonas aeruginosa PAO1 reveals novel domain architectures. mBio 1:e00189-00110–e00189-00119

    Article  Google Scholar 

  26. Pan Y, Ruan X, Valvano MA, Konermann L (2012) Validation of protein topology models by oxidative labeling and mass spectrometry. J Am Soc Mass Spectrom 23:889–898

    Article  PubMed  CAS  Google Scholar 

  27. Ruan X, Pérez JM, Marolda CL, Valvano MA (2012) The WaaL O-antigen lipopolysaccharide ligase has features in common with metal ion-­independent inverting glycosyltransferases. Glycobiology 22:288–299

    Article  PubMed  CAS  Google Scholar 

  28. Han W, Wu B, Li L, Zhao G, Woodward R, Pettit N, Cai L, Thon V, Wang PG (2012) Defining the function of lipopolysaccharide O-antigen ligase WaaL using chemoenzymatically synthesized substrates. J Biol Chem 287:5357–5365

    Article  PubMed  CAS  Google Scholar 

  29. Hug I, Couturier MR, Rooker MM, Taylor DE, Stein M, Feldman MF (2010) Helicobacter pylori lipopolysaccharide is synthesized via a novel pathway with an evolutionary connection to protein N-glycosylation. PLoS Pathog 6:e1000819

    Article  PubMed  Google Scholar 

  30. Neuhard J, Thomassen E (1976) Altered deoxyribonucleic pools in P2 eductants of Escherichia coli K-12 due to deletion of the dcd gene. J Bacteriol 126:999–1001

    PubMed  CAS  Google Scholar 

  31. Valvano MA, Crosa JH (1989) Molecular cloning and expression in Escherichia coli K-12 of chromosomal genes determining the O7 lipopolysaccharide antigen of a human invasive strain of E. coli O7:K1. Infect Immun 57:937–943

    PubMed  CAS  Google Scholar 

  32. Marolda CL, Lahiry P, Vinés E, Saldías S, Valvano MA (2006) Micromethods for the characterization of lipid A-core and O-antigen lipopolysaccharide. Methods Mol Biol 347:237–252

    PubMed  CAS  Google Scholar 

  33. Lee CH, Tsai CM (1999) Quantification of bacterial lipopolysaccharides by the purpald assay: measuring formaldehyde generated from 2-keto-3-deoxyoctonate and heptose at the inner core by periodate oxidation. Anal Biochem 267:161–168

    Article  PubMed  CAS  Google Scholar 

  34. Pan Y, Konermann L (2010) Membrane protein structural insights from chemical labeling and mass spectrometry. Analyst 135:1191–2000

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Canadian Institutes of Health Research to M.A.V., who also holds a Canada Research Chair in Infectious Diseases and Microbial Pathogenesis.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ruan, X., Valvano, M.A. (2013). In Vitro O-Antigen Ligase Assay. In: Brockhausen, I. (eds) Glycosyltransferases. Methods in Molecular Biology, vol 1022. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-465-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-465-4_15

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-464-7

  • Online ISBN: 978-1-62703-465-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics