Skip to main content

Water-Solubilization and Functionalization of Semiconductor Quantum Dots

  • Protocol
  • First Online:
Nanomaterial Interfaces in Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1025))

Abstract

Semiconductor quantum dots (QDs) are highly fluorescent nanocrystals that have abundant potential for uses in biological imaging and sensing. However, the best materials are synthesized in hydrophobic surfactants that prevent direct aqueous solubilization. While several methods have been developed to impart water-solubility, an aqueous QD dispersion has no inherent useful purpose and must be functionalized further. Due to the colloidal nature of QD dispersions, traditional methods of chemical conjugation in water either have low yields or cause irreversible precipitation of the sample. Here, we describe several methods to water-solubilize QDs and further functionalize the materials with chemical and/or biological vectors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brus LE (1983) A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites. J Chem Phys 79:5566–5571

    Article  CAS  Google Scholar 

  2. Rossetti R, Nakahara S, Brus LE (1983) Quantum size effects in the redox potentials, resonance Raman-spectra, and electronic-spectra of CdS crystallites in aqueous-solution. J Chem Phys 79:1086–1088

    Article  CAS  Google Scholar 

  3. Ekimov AI, Onushchenko AA (1984) Size quantization of the electron energy spectrum in a microscopic semiconductor crystal. JETP Lett 40:1136

    Google Scholar 

  4. Klimov VI et al (2000) Optical gain and stimulated emission in nanocrystal quantum dots. Science 290:314–317

    Article  CAS  Google Scholar 

  5. Colvin VL, Schlamp MC, Alivisatos AP (1994) Light-emitting-diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 370:354–357

    Article  CAS  Google Scholar 

  6. Huynh WU, Dittmer JJ, Alivisatos AP (2002) Hybrid nanorod-polymer solar cells. Science 295:2425–2427

    Article  CAS  Google Scholar 

  7. Hines MA, Guyot-Sionnest P (1996) Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals. J Phys Chem 100:468–471

    Article  CAS  Google Scholar 

  8. Michalet X et al (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307:538–544

    Article  CAS  Google Scholar 

  9. Snee PT et al (2006) A ratiometric CdSe/ZnS nanocrystal pH sensor. J Am Chem Soc 128:13320–13321

    Article  CAS  Google Scholar 

  10. Medintz IL et al (2003) Self-assembled nanoscale biosensors based on quantum dot FRET donors. Nat Mater 2:630–638

    Article  CAS  Google Scholar 

  11. Liu D, Snee PT (2011) Water soluble semiconductor nanocrystals cap exchanged with metallated ligands. ACS Nano 5:546–550

    Article  CAS  Google Scholar 

  12. Wu XY et al (2003) Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol 21:41–46

    Article  CAS  Google Scholar 

  13. Mattoussi H et al (2000) Self-assembly of CdSe-ZnS quantum dot bioconjugates using an engineered recombinant protein. J Am Chem Soc 122:12142–12150

    Article  CAS  Google Scholar 

  14. Shen HY, Jawaid AM, Snee PT (2009) Poly(ethylene glycol) carbodiimide coupling reagents for the biological and chemical functionalization of water-soluble nanoparticles. ACS Nano 3:915–923

    Article  CAS  Google Scholar 

  15. Snee PT et al (2011) Quantifying quantum dots with Förster resonant energy transfer. J Phys Chem C 115:19578–19582

    Article  CAS  Google Scholar 

  16. Nguyen T, Francis MB (2003) Practical synthetic route to functionalized rhodamine dyes. Org Lett 5:3245–3248

    Article  CAS  Google Scholar 

  17. Gunsalus IC, Barton LS, Gruber W (1956) Biosynthesis and structure of lipoic acid derivatives. J Am Chem Soc 78:1763–1768

    Article  CAS  Google Scholar 

  18. Susumu K, Mei BC, Mattoussi H (2009) Multifunctional ligands based on dihydrolipoic acid and polyethylene glycol to promote biocompatibility of quantum dots. Nat Protoc 4:424–436

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the ACS PRF (50859-ND10) and by funds from the University of Illinois at Chicago. We would like to thank Prof. Hedi Mattoussi for helpful discussions concerning the synthesis of cap-exchanged CdSe/CdZnS QDs.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Tyrakowski, C.M., Isovic, A., Snee, P.T. (2013). Water-Solubilization and Functionalization of Semiconductor Quantum Dots. In: Bergese, P., Hamad-Schifferli, K. (eds) Nanomaterial Interfaces in Biology. Methods in Molecular Biology, vol 1025. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-462-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-462-3_4

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-461-6

  • Online ISBN: 978-1-62703-462-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics