Skip to main content

A Genetic Strategy for the Analysis of Individual Axon Morphologies in cGMP Signalling Mutant Mice

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1020))

Abstract

One of the many physiological functions of cyclic guanosine 3′,5′ monophosphate (cGMP) signalling is the regulation of a specific mode of axonal branching. The bifurcation of axons from dorsal root ganglion (DRG) neurons at the dorsal root entry zone of the embryonic spinal cord is triggered by a cGMP ­signalling pathway comprising the ligand C-type natriuretic peptide (CNP), the cGMP-producing natriuretic peptide receptor 2 (Npr2), and the cGMP-dependent protein kinase Iα (cGKIα). Absence of any of these components causes a loss of bifurcation and sensory axons instead only turn in either a rostral or a caudal direction. In this chapter we describe a genetic strategy to study the impact of cGMP signalling on the arborization of individual DRG neurons in mice. Expression of an alkaline phosphatase (AP) reporter is selectively induced in Npr2-positive DRG neurons by tamoxifen-dependent activation of a Cre ­recombinase under the control of the Npr2 promoter. This approach might also be employed for the analysis of axonal branching in neuronal subsets expressing Npr2 elsewhere in the nervous system.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Acebes A, Ferrus A (2000) Cellular and molecular features of axon collaterals and dendrites. Trends Neurosci 23:557–565

    Article  PubMed  CAS  Google Scholar 

  2. Schmidt H, Rathjen FG (2010) Signalling mechanisms regulating axonal branching in vivo. Bioessays 32:977–985

    Article  PubMed  CAS  Google Scholar 

  3. Gibson DA, Ma L (2011) Developmental regulation of axon branching in the vertebrate nervous system. Development 138:183–195

    Article  PubMed  CAS  Google Scholar 

  4. Gallo G (2011) The cytoskeletal and signaling mechanisms of axon collateral branching. Dev Neurobiol 71:201–220

    Article  PubMed  Google Scholar 

  5. Ozaki S, Snider WD (1997) Initial trajectories of sensory axons toward laminar targets in the developing mouse spinal cord. J Comp Neurol 380:215–229

    Article  PubMed  CAS  Google Scholar 

  6. Schmidt H, Werner M, Heppenstall PA et al (2002) cGMP-mediated signaling via cGKIalpha is required for the guidance and connectivity of sensory axons. J Cell Biol 159:489–498

    Article  PubMed  CAS  Google Scholar 

  7. Schmidt H, Stonkute A, Juttner R et al (2007) The receptor guanylyl cyclase Npr2 is essential for sensory axon bifurcation within the spinal cord. J Cell Biol 179:331–340

    Article  PubMed  CAS  Google Scholar 

  8. Schmidt H, Stonkute A, Juttner R et al (2009) C-type natriuretic peptide (CNP) is a bifurcation factor for sensory neurons. Proc Natl Acad Sci USA 106:16847–16852

    Article  PubMed  CAS  Google Scholar 

  9. Zhao Z, Wang Z, Gu Y et al (2009) Regulate axon branching by the cyclic GMP pathway via inhibition of glycogen synthase kinase 3 in dorsal root ganglion sensory neurons. J Neurosci 29:1350–1360

    Article  PubMed  CAS  Google Scholar 

  10. Zhao Z, Ma L (2009) Regulation of axonal development by natriuretic peptide hormones. Proc Natl Acad Sci USA 106:18016–18021

    Article  PubMed  CAS  Google Scholar 

  11. Golgi C (1873) Sulla struttura della sostanza grigia del cervello. Gazzetta Medica Italiana-Lombardia 33:244–246

    Google Scholar 

  12. Kristensson K, Olsson Y (1971) Retrograde axonal transport of protein. Brain Res 29:363–365

    Article  PubMed  CAS  Google Scholar 

  13. Lapper SR, Bolam JP (1991) The anterograde and retrograde transport of neurobiotin in the central nervous system of the rat: comparison with biocytin. J Neurosci Methods 39:163–174

    Article  PubMed  CAS  Google Scholar 

  14. Honig MG, Hume RI (1989) Dil and diO: versatile fluorescent dyes for neuronal labelling and pathway tracing. Trends Neurosci 12:333–1

    Article  PubMed  CAS  Google Scholar 

  15. Feng G, Mellor RH, Bernstein M et al (2000) Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28:41–51

    Article  PubMed  CAS  Google Scholar 

  16. Birling MC, Gofflot F, Warot X (2009) Site-specific recombinases for manipulation of the mouse genome. Methods Mol Biol 561:245–263

    Article  PubMed  CAS  Google Scholar 

  17. Badea TC, Wang Y, Nathans J (2003) A noninvasive genetic/pharmacologic strategy for visualizing cell morphology and clonal relationships in the mouse. J Neurosci 23:2314–2322

    PubMed  CAS  Google Scholar 

  18. Joyner AL, Zervas M (2006) Genetic inducible fate mapping in mouse: establishing genetic lineages and defining genetic neuroanatomy in the nervous system. Dev Dyn 235:2376–2385

    Article  PubMed  Google Scholar 

  19. Feil R, Wagner J, Metzger D et al (1997) Regulation of Cre recombinase activity by mutated estrogen receptor ligand-binding domains. Biochem Biophys Res Commun 237:752–757

    Article  PubMed  CAS  Google Scholar 

  20. Lobe CG, Koop KE, Kreppner W et al (1999) Z/AP, a double reporter for cre-mediated recombination. Dev Biol 208:281–292

    Article  PubMed  CAS  Google Scholar 

  21. Badea TC, Nathans J (2004) Quantitative analysis of neuronal morphologies in the mouse retina visualized by using a genetically directed reporter. J Comp Neurol 480:331–351

    Article  PubMed  Google Scholar 

  22. Badea TC, Hua ZL, Smallwood PM et al (2009) New mouse lines for the analysis of neuronal morphology using CreER(T)/loxP-directed sparse labeling. PLoS One 4:e7859

    Article  PubMed  Google Scholar 

  23. Tsuji T, Kunieda T (2005) A loss-of-function mutation in natriuretic peptide receptor 2 (Npr2) gene is responsible for disproportionate dwarfism in cn/cn mouse. J Biol Chem 280:14288–14292

    Article  PubMed  CAS  Google Scholar 

  24. Schmidt H, Rathjen FG (2011) DiI-labeling of DRG neurons to study axonal branching in a whole mount preparation of mouse embryonic spinal cord. J Vis Exp 58:e3667

    Google Scholar 

Download references

Acknowledgements

We thank Dr. Alistair Garratt (Max Delbrück Center, Berlin) for a critical reading of the manuscript. Work in the authors’ laboratory was supported by a grant from the Deutsche Forschungsgemeinschaft (SFB665).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Schmidt, H., Ter-Avetisyan, G., Rathjen, F.G. (2013). A Genetic Strategy for the Analysis of Individual Axon Morphologies in cGMP Signalling Mutant Mice. In: Krieg, T., Lukowski, R. (eds) Guanylate Cyclase and Cyclic GMP. Methods in Molecular Biology, vol 1020. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-459-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-459-3_12

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-458-6

  • Online ISBN: 978-1-62703-459-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics