Skip to main content

Nanopore Single-Molecule Detection of Circulating MicroRNAs

  • Protocol
  • First Online:
Circulating MicroRNAs

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1024))

Abstract

MicroRNAs (miRNAs) are a class of tiny noncoding RNAs that play an important role in regulating every aspect of cellular activities. Dysfunctional expression of miRNAs disrupts normal biological processes, leading to the development of various diseases including cancer. Circulating miRNAs are being investigated as biomarkers with a potential for noninvasive disease detection. This demands the development of new technologies to accurately detect miRNAs with short assay time and affordable cost. We have proposed a nanopore single-molecule method for accurate, label-free detection of circulating miRNAs without amplification of the target miRNA. This concise protocol describes how to device a protein nanopore to quantify target miRNAs in RNA extraction, and discusses at the end the advantages, challenges, and broad impact of the nanopore approach for miRNA detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carthew RW, Sontheimer EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136:642–655

    Article  PubMed  CAS  Google Scholar 

  2. Kim VN, Han J, Siomi MC (2009) Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10:126–139

    Article  PubMed  CAS  Google Scholar 

  3. Du T, Zamore PD (2005) microPrimer: the biogenesis and function of microRNA. Development (Cambridge) 132:4645–4652

    Article  CAS  Google Scholar 

  4. Inui M, Martello G, Piccolo S (2010) MicroRNA control of signal transduction. Nat Rev Mol Cell Biol 11:252–263

    Article  PubMed  CAS  Google Scholar 

  5. Croce CM (2009) Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet 10:704–714

    Article  PubMed  CAS  Google Scholar 

  6. Davalos V, Esteller M (2010) MicroRNAs and cancer epigenetics: a macrorevolution. Curr Opin Oncol 22:35–45

    Article  PubMed  CAS  Google Scholar 

  7. Mitchell PS, Parkin RK, Kroh EM et al (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA 105:10513–10518

    Article  PubMed  CAS  Google Scholar 

  8. Zheng D, Haddadin S, Wang Y et al (2011) Plasma micrornas as novel biomarkers for early detection of lung cancer. Int J Clin Exp Pathol 4:575–586

    PubMed  CAS  Google Scholar 

  9. Calin GA, Ferracin M, Cimmino A et al (2005) A microRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med 353:1793–1801

    Article  PubMed  CAS  Google Scholar 

  10. Hunt EA, Goulding AM, Deo SK (2009) Direct detection and quantification of microRNAs. Anal Biochem 387:1–12

    Article  PubMed  CAS  Google Scholar 

  11. Alhasan AH, Kim DY, Daniel WL et al (2012) Scanometric microRNA array profiling of prostate cancer markers using spherical nucleic acid-gold nanoparticle conjugates. Anal Chem 84:4153–4160

    Article  PubMed  CAS  Google Scholar 

  12. Chapin SC, Appleyard DC, Pregibon DC et al (2011) Rapid microRNA profiling on encoded gel microparticles. Angew Chem Int Ed Engl 50:2289–2293

    PubMed  CAS  Google Scholar 

  13. Chen C, Ridzon DA, Broomer AJ et al (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33

    Google Scholar 

  14. Hafner M, Renwick N, Brown M et al (2011) RNA-ligase-dependent biases in miRNA representation in deep-sequenced small RNA cDNA libraries. RNA 17:1697–1712

    Article  PubMed  CAS  Google Scholar 

  15. Jin G, Cid M, Poole CB et al (2010) Protein mediated miRNA detection and siRNA enrichment using p19. Biotechniques 48:xvii–xxiii

    Article  PubMed  CAS  Google Scholar 

  16. Kloosterman WP, Wienholds E, de Bruijn E et al (2006) In situ detection of miRNAs in animal embryos using LNA-modified oligonucleotide probes. Nat Methods 3:27–29

    Article  PubMed  CAS  Google Scholar 

  17. Koshiol J, Wang E, Zhao Y et al (2010) Strengths and limitations of laboratory procedures for microRNA detection. Cancer Epidemiol Biomarkers Prev 19:907–911

    Article  PubMed  CAS  Google Scholar 

  18. Murphy J, Bustin SA (2009) Reliability of real-time reverse-transcription PCR in clinical diagnostics: gold standard or substandard? Expert Rev Mol Diagn 9:187–197

    Article  PubMed  CAS  Google Scholar 

  19. Neely LA, Patel S, Garver J et al (2006) A single-molecule method for the quantitation of microRNA gene expression. Nat Methods 3:41–46

    Article  PubMed  CAS  Google Scholar 

  20. Nielsen BS (2012) MicroRNA in situ hybridization. Methods Mol Biol 822:67–84

    Article  PubMed  CAS  Google Scholar 

  21. Nuovo GJ (2008) In situ detection of precursor and mature microRNAs in paraffin embedded, formalin fixed tissues and cell preparations. Methods 44:39–46

    Article  PubMed  CAS  Google Scholar 

  22. Pena JT, Sohn-Lee C, Rouhanifard SH et al (2009) miRNA in situ hybridization in formaldehyde and EDC-fixed tissues. Nat Methods 6:139–141

    Article  PubMed  CAS  Google Scholar 

  23. Ro S, Park C, Jin J et al (2006) A PCR-based method for detection and quantification of small RNAs. Biochem Biophys Res Commun 351:756–763

    Article  PubMed  CAS  Google Scholar 

  24. Su Z, Ning B, Fang H et al (2011) Next-generation sequencing and its applications in molecular diagnostics. Expert Rev Mol Diagn 11:333–343

    PubMed  Google Scholar 

  25. Wang Y, Zheng D, Tan Q et al (2011) Nanopore-based detection of circulating microRNAs in lung cancer patients. Nat Nanotechnol 6:668–674

    Article  PubMed  CAS  Google Scholar 

  26. Wanunu M, Dadosh T, Ray V et al (2010) Rapid electronic detection of probe-specific microRNAs using thin nanopore sensors. Nat Nanotechnol 5:807–814

    Article  PubMed  CAS  Google Scholar 

  27. Bayley H, Cremer PS (2001) Stochastic sensors inspired by biology. Nature 413:226–230

    Article  PubMed  CAS  Google Scholar 

  28. Bayley H, Cronin B, Heron A et al (2008) Droplet interface bilayers. Mol Biosyst 4:1191–1208

    Article  PubMed  CAS  Google Scholar 

  29. Gu LQ, Shim JW (2010) Single molecule sensing by nanopores and nanopore devices. Analyst 135:441–451

    Article  PubMed  CAS  Google Scholar 

  30. Hall AR, Scott A, Rotem D et al (2010) Hybrid pore formation by directed insertion of alpha-haemolysin into solid-state nanopores. Nat Nanotechnol 5:874–877

    Article  PubMed  CAS  Google Scholar 

  31. Hornblower B, Coombs A, Whitaker RD et al (2007) Single-molecule analysis of DNA-protein complexes using nanopores. Nat Methods 4:315–317

    PubMed  CAS  Google Scholar 

  32. Howorka S, Siwy Z (2009) Nanopore analytics: sensing of single molecules. Chem Soc Rev 38:2360–2384

    Article  PubMed  CAS  Google Scholar 

  33. Ma L, Cockroft SL (2010) Biological nanopores for single-molecule biophysics. Chembiochem 11:25–34

    Article  PubMed  CAS  Google Scholar 

  34. Majd S, Yusko EC, Billeh YN et al (2010) Applications of biological pores in nanomedicine, sensing, and nanoelectronics. Curr Opin Biotechnol 21:439–476

    Article  PubMed  CAS  Google Scholar 

  35. Movileanu L (2009) Interrogating single proteins through nanopores: challenges and opportunities. Trends Biotechnol 27:333–341

    Article  PubMed  CAS  Google Scholar 

  36. Olasagasti F, Lieberman KR, Benner S et al (2010) Replication of individual DNA molecules under electronic control using a protein nanopore. Nat Nanotechnol 5:798–806

    Article  PubMed  CAS  Google Scholar 

  37. Venkatesan BM, Bashir R (2011) Nanopore sensors for nucleic acid analysis. Nat Nanotechnol 6:615–624

    Article  PubMed  CAS  Google Scholar 

  38. Wanunu M, Morrison W, Rabin Y et al (2010) Electrostatic focusing of unlabelled DNA into nanoscale pores using a salt gradient. Nat Nanotechnol 5:160–165

    Article  PubMed  CAS  Google Scholar 

  39. Wendell D, Jing P, Geng J et al (2009) Translocation of double-stranded DNA through membrane-adapted phi29 motor protein nanopores. Nat Nanotechnol 4:765–772

    Article  PubMed  CAS  Google Scholar 

  40. Branton D, Deamer DW, Marziali A et al (2008) The potential and challenges of nanopore sequencing. Nat Biotechnol 26:1146–1153

    Article  PubMed  CAS  Google Scholar 

  41. Cherf GM, Lieberman KR, Rashid H et al (2012) Automated forward and reverse ratcheting of DNA in a nanopore at 5-A precision. Nat Biotechnol 30:344–348

    Article  PubMed  CAS  Google Scholar 

  42. Kasianowicz JJ, Brandin E, Branton D et al (1996) Characterization of individual polynucleotide molecules using a membrane channel. Proc Natl Acad Sci USA 93:13770–13773

    Article  PubMed  CAS  Google Scholar 

  43. Manrao EA, Derrington IM, Laszlo AH et al (2012) Reading DNA at single-nucleotide resolution with a mutant MspA nanopore and phi29 DNA polymerase. Nat Biotechnol 30:349–353

    Article  PubMed  CAS  Google Scholar 

  44. Montal M, Mueller P (1972) Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties. Proc Natl Acad Sci USA 69:3561–3566

    Article  PubMed  CAS  Google Scholar 

  45. Mathé J, Aksimentiev A, Nelson DR et al (2005) Orientation discrimination of single-stranded DNA inside the alpha-hemolysin membrane channel. Proc Natl Acad Sci USA 102:12377–12382

    Article  PubMed  Google Scholar 

  46. Maglia G, Restrepo MR, Mikhailova E et al (2008) Enhanced translocation of single DNA molecules through α-hemolysin nanopores by manipulation of internal charge. Proc Natl Acad Sci USA 105:19720–19725

    Article  PubMed  CAS  Google Scholar 

  47. Calin GA, Croce CM (2006) MicroRNA signatures in human cancers. Nat Rev Cancer 6:857–866

    Article  PubMed  CAS  Google Scholar 

  48. Garzon R, Calin GA, Croce CM (2009) MicroRNAs in cancer. Annu Rev Med 60:167–179

    Article  PubMed  CAS  Google Scholar 

  49. Ortholan C, Puissegur MP, Ilie M et al (2009) MicroRNAs and lung cancer: new oncogenes and tumor suppressors, new prognostic factors and potential therapeutic targets. Curr Med Chem 16:1047–1061

    Article  PubMed  CAS  Google Scholar 

  50. Li W, Ruan K (2009) MicroRNA detection by microarray. Anal Bioanal Chem 394:1117–1124

    Article  PubMed  CAS  Google Scholar 

  51. Boeri M, Verri C, Conte D et al (2011) MicroRNA signatures in tissues and plasma predict development and prognosis of computed tomography detected lung cancer. Proc Natl Acad Sci USA 108:3713–3718

    Article  PubMed  CAS  Google Scholar 

  52. Iorio MV, Croce CM (2009) MicroRNAs in cancer: small molecules with a huge impact. J Clin Oncol 27:5848–5856

    Article  PubMed  CAS  Google Scholar 

  53. Landi MT, Zhao Y, Rotunno M et al (2010) MicroRNA expression differentiates histology and predicts survival of lung cancer. Clin Cancer Res 16:430–441

    Article  PubMed  CAS  Google Scholar 

  54. Baaken G, Ankri N, Schuler AK et al (2011) Nanopore-based single-molecule mass spectrometry on a lipid membrane microarray. ACS Nano 5:8080–8088

    Article  PubMed  CAS  Google Scholar 

  55. Baaken G, Sondermann M, Schlemmer C et al (2008) Planar microelectrode-cavity array for high-resolution and parallel electrical recording of membrane ionic currents. Lab Chip 8:938–944

    Article  PubMed  CAS  Google Scholar 

  56. Eisenstein M (2012) Oxford nanopore announcement sets sequencing sector abuzz. Nat Biotechnol 30(4):295–296

    Article  PubMed  CAS  Google Scholar 

  57. Wallace EVB, Stoddart D, Heron AJ et al (2010) Identification of epigenetic DNA modifications with a protein nanopore. Chem Commun 46:8195–8197

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This investigation was supported by NSF 0546165 and NIH 1R01GM079613. This investigation was conducted in a facility constructed with support from the Research Facilities Improvement Program Grant C06-RR-016489-01 from the National Center for Research Resources, National Institutes of Health.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Gu, LQ., Wang, Y. (2013). Nanopore Single-Molecule Detection of Circulating MicroRNAs. In: Kosaka, N. (eds) Circulating MicroRNAs. Methods in Molecular Biology, vol 1024. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-453-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-453-1_21

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-452-4

  • Online ISBN: 978-1-62703-453-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics