Skip to main content

Modeling Signaling Networks with Different Formalisms: A Preview

  • Protocol
  • First Online:
In Silico Systems Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1021))

Abstract

In the last 30 years, many of the mechanisms behind signal transduction, the process by which the cell takes extracellular signals as an input and converts them to a specific cellular phenotype, have been experimentally determined. With these discoveries, however, has come the realization that the architecture of signal transduction, the signaling network, is incredibly complex. Although the main pathways between receptor and output are well-known, there is a complex net of regulatory features that include crosstalk between different pathways, spatial and temporal effects, and positive and negative feedbacks. Hence, modeling approaches have been used to try and unravel some of these complexities.

We use the mitogen-activated protein kinase cascade to illustrate chemical kinetic and logic approaches to modeling signaling networks. By using a common well-known model, we illustrate here the assumptions and level of detail behind each modeling approach, which serves as an introduction to the more detailed discussions of each in the accompanying chapters in this book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  PubMed  CAS  Google Scholar 

  2. Aldridge BB et al (2006) Physicochemical modelling of cell signalling pathways. Nat Cell Biol 8(11):1195–1203

    Article  PubMed  CAS  Google Scholar 

  3. Kholodenko B, Yaffe MB, Kolch W (2012) Computational approaches for analyzing information flow in biological networks. Sci Signal 5(2):re1

    Article  PubMed  Google Scholar 

  4. Terfve C, Saez-Rodriguez J (2012) Modeling signaling networks using high-throughput phospho-proteomics. Adv Exp Med Biol 736:19–57

    Article  PubMed  Google Scholar 

  5. Choudhary C, Mann M (2010) Decoding signalling networks by mass spectrometry-based proteomics. Nat Rev Mol Cell Biol 11(6):427–439

    Article  PubMed  CAS  Google Scholar 

  6. Sabidó E, Selevsek N, Aebersold R (2012) Mass spectrometry-based proteomics for systems biology. Curr Opin Biotechnol 23(4):591–597

    Article  PubMed  Google Scholar 

  7. Wilkinson DJ (2009) Stochastic modelling for quantitative description of heterogeneous biological systems. Nat Rev Genet 10(2):122–133

    Article  PubMed  CAS  Google Scholar 

  8. Tanner SD, Ornatsky O, Bandura DR (2007) Multiplex bio-assay with inductively coupled plasma mass spectrometry: towards a massively multivariate single-cell technology. Spectrochim Acta Part B At Spectrosc 62(3):188–195

    Article  Google Scholar 

  9. Behar M, Hoffmann A (2010) Understanding the temporal codes of intra-cellular signals. Curr Opin Genet Dev 20(6):684–693

    Article  PubMed  CAS  Google Scholar 

  10. Spiller DG et al (2010) Measurement of single-cell dynamics. Nature 465(7299):736–745

    Article  PubMed  CAS  Google Scholar 

  11. Spencer SL et al (2009) Non-genetic origins of cell-to-cell variability in TRAIL-induced apoptosis. Nature 459(7245):428–432

    Article  PubMed  CAS  Google Scholar 

  12. Welch CM et al (2011) Imaging the coordination of multiple signalling activities in living cells. Nat Rev Mol Cell Biol 12(11):749–756

    Article  PubMed  CAS  Google Scholar 

  13. Gaudet S et al (2005) A compendium of signals and responses triggered by prodeath and prosurvival cytokines. Mol Cell Proteomics 4(10):1569–1590

    Article  PubMed  CAS  Google Scholar 

  14. Barabási A-L, Oltvai ZN (2004) Network biology: understanding the cell's functional organization. Nat Rev Genet 5(2):101–113

    Article  PubMed  Google Scholar 

  15. Bossi A, Lehner B (2009) Tissue specificity and the human protein interaction network. Mol Syst Biol 5:260

    Article  PubMed  Google Scholar 

  16. Kiselev VY, Marenduzzo D, Goryachev AB (2011) Lateral dynamics of proteins with polybasic domain on anionic membranes: a dynamic Monte-Carlo study. Biophys J 100(5):1261–1270

    Article  PubMed  CAS  Google Scholar 

  17. Stewart-Ornstein J, Weissman JS, El-Samad H (2012) Cellular noise regulons underlie fluctuations in Saccharomyces cerevisiae. Mol Cell 45(4):483–493

    Article  PubMed  CAS  Google Scholar 

  18. Hlavacek WS et al (2006) Rules for modeling signal-transduction systems. Sci STKE 2006(344):re6

    PubMed  Google Scholar 

  19. Kholodenko BN (2006) Cell-signalling dynamics in time and space. Nat Rev Mol Cell Biol 7(3):165–176

    Article  PubMed  CAS  Google Scholar 

  20. Fritsche-Guenther R et al (2011) Strong negative feedback from Erk to Raf confers robustness to MAPK signalling. Mol Syst Biol 7

    Google Scholar 

  21. Natarajan M et al (2006) A global analysis of cross-talk in a mammalian cellular signalling network. Nat Cell Biol 8(6):571–580

    Article  PubMed  CAS  Google Scholar 

  22. Wang CC, Cirit M, Haugh JM (2009) PI3K-dependent cross-talk interactions converge with Ras as quantifiable inputs integrated by Erk. Mol Syst Biol 5:246

    Article  PubMed  Google Scholar 

  23. Hunter T, Sefton BM (1980) Transforming gene product of Rous sarcoma virus phosphorylates tyrosine. Proc Natl Acad Sci U S A 77(3):1311–1315

    Article  PubMed  CAS  Google Scholar 

  24. Ferrell JE, Bhatt RR (1997) Mechanistic studies of the dual phosphorylation of mitogen-activated protein kinase. J Biol Chem 272(30):19008–19016

    Article  PubMed  CAS  Google Scholar 

  25. Sturm OE et al (2010) The mammalian MAPK/ERK pathway exhibits properties of a negative feedback amplifier. Sci Signal 3(153):ra90

    Article  PubMed  CAS  Google Scholar 

  26. Kiel C, Serrano L (2012) Challenges ahead in signal transduction: MAPK as an example. Curr Opin Biotechnol 23(3):305–314

    Article  PubMed  CAS  Google Scholar 

  27. Kholodenko BN (2000) Negative feedback and ultrasensitivity can bring about oscillations in the mitogen-activated protein kinase cascades. Eur J Biochem 267(6):1583–1588

    Article  PubMed  CAS  Google Scholar 

  28. Huang CY, Ferrell JE (1996) Ultrasensitivity in the mitogen-activated protein kinase cascade. Proc Natl Acad Sci U S A 93(19):10078–10083

    Article  PubMed  CAS  Google Scholar 

  29. Markevich NI, Hoek JB, Kholodenko BN (2004) Signaling switches and bistability arising from multisite phosphorylation in protein kinase cascades. J Cell Biol 164(3):353–359

    Article  PubMed  CAS  Google Scholar 

  30. Blüthgen N et al (2006) Effects of sequestration on signal transduction cascades. FEBS J 273(5):895–906

    Article  PubMed  Google Scholar 

  31. Saez-Rodriguez J, Kremling A (2004) Modular analysis of signal transduction networks. IEEE Control Syst Mag 24:35–52

    Article  Google Scholar 

  32. Kim Y et al (2011) Substrate-dependent control of MAPK phosphorylation in vivo. Mol Syst Biol 7:467

    PubMed  Google Scholar 

  33. Del Vecchio D, Ninfa AJ, Sontag ED (2008) Modular cell biology: retroactivity and insulation. Mol Syst Biol 4:161

    PubMed  Google Scholar 

  34. Schoeberl B et al (2002) Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors. Nat Biotechnol 20(4):370–375

    Article  PubMed  Google Scholar 

  35. Bashor CJ et al (2008) Using engineered scaffold interactions to reshape MAP kinase pathway signaling dynamics. Science 319(5869):1539–1543

    Article  PubMed  CAS  Google Scholar 

  36. Kholodenko BN, Birtwistle MR (2009) Four-dimensional dynamics of MAPK information processing systems. Wiley Interdiscip Rev Syst Biol Med 1(1):28–44

    Article  PubMed  CAS  Google Scholar 

  37. Rao CV, Arkin AP (2003) Stochastic chemical kinetics and the quasi-steady-state assumption: application to the Gillespie algorithm. J Chem Phys 118(11):4999

    Article  CAS  Google Scholar 

  38. Wolkenhauer O et al (2004) Modeling and simulation of intracellular dynamics: choosing an appropriate framework. IEEE Trans Nanobioscience 3(3):200–207

    Article  PubMed  Google Scholar 

  39. Novère NL et al (2009) The systems biology graphical notation. Nat Biotechnol 27(8):735–741

    Article  PubMed  Google Scholar 

  40. Terfve CDA et al (2012) CellNOptR: a flexible toolkit to train protein signaling networks to data using multiple logic formalisms. BMC Syst Biol 6(1):133

    Article  PubMed  CAS  Google Scholar 

  41. MacNamara A et al (2012) State-time spectrum of signal transduction logic models. Phys Biol 9(4):045003

    Article  PubMed  Google Scholar 

  42. Wittmann DM et al (2009) Transforming Boolean models to continuous models: methodology and application to T-cell receptor signaling. BMC Syst Biol 3:98

    Article  PubMed  Google Scholar 

  43. Qiao L et al (2007) Bistability and oscillations in the Huang-Ferrell model of MAPK signaling. PLoS Comput Biol 3(9):1819–1826

    Article  PubMed  CAS  Google Scholar 

  44. Hoops S et al (2006) COPASI—a COmplex PAthway SImulator. Bioinformatics 22(24):3067–3074

    Article  PubMed  CAS  Google Scholar 

  45. Team RC (2012) R: a language and environment for statistical computing. Available at: http://www.R-project.org/.

  46. Gonzalez AG et al (2006) GINsim: a software suite for the qualitative modelling, simulation and analysis of regulatory networks. Biosystems 84(2):91–100

    Article  PubMed  CAS  Google Scholar 

  47. Müssel C, Hopfensitz M, Kestler HA (2010) BoolNet—an R package for generation, reconstruction and analysis of Boolean networks. Bioinformatics 26(10):1378–1380

    Article  PubMed  Google Scholar 

  48. Klamt S, Saez-Rodriguez J, Gilles ED (2007) Structural and functional analysis of cellular networks with Cell NetAnalyzer. BMC Syst Biol 1:2

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

MacNamara, A., Henriques, D., Saez-Rodriguez, J. (2013). Modeling Signaling Networks with Different Formalisms: A Preview. In: Schneider, M. (eds) In Silico Systems Biology. Methods in Molecular Biology, vol 1021. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-450-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-450-0_5

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-449-4

  • Online ISBN: 978-1-62703-450-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics