Skip to main content

Implementing a QTL Detection Study (GWAS) Using Genomic Prediction Methodology

  • Protocol
  • First Online:
Book cover Genome-Wide Association Studies and Genomic Prediction

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1019))

Abstract

Genomic prediction exploits historical genotypic and phenotypic data to predict performance on selection candidates based only on their genotypes. It achieves this by a process known as training that derives the values of all the chromosome fragments that can be characterized by regressing the historical phenotypes on some or all of the genotyped loci. A genome-wide association study (GWAS) involves a genome-wide search for chromosome fragments with significant association with phenotype. One Bayesian approach to GWAS makes inferences using samples from the posterior distribution of genotypic effects obtained in the training phase of genomic prediction. Here we describe how to do this from commonly used Bayesian methods for genomic prediction, and we comment on how to interpret the results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hindorff LA, MacArthur J (European Bioinformatics Institute), Wise A, Junkins HA, Hall PN, Klemm AK, Manolio TA (2012). A catalog of published genome-wide association studies. www.genome.gov/gwastudies. Accessed 16 May 2012

  2. Hao K, Chudin E, Greenawalt D, Schadt EE (2010) Magnitude of stratification in human populations and impacts on genome wide association studies. PLoS One 5(1):e8695

    Article  PubMed  Google Scholar 

  3. Snelling WM, Allan MF, Keele JW, Kuehn LA, McDaneld T, Smith TPL, Sonstegard TS, Thallman RM, Bennett GL (2010) Genome-wide association study of growth in crossbred beef cattle. J Anim Sci 88:837–848

    Article  PubMed  CAS  Google Scholar 

  4. Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

    PubMed  CAS  Google Scholar 

  5. Toosi A, Fernando RL, Dekkers JCM (2010) Genomic selection in admixed and crossbred populations. J Anim Sci 88:32–46

    Article  PubMed  CAS  Google Scholar 

  6. Allen DM, Cady FB (1982) Analyzing experimental data by regression. Lifetime Learning, Belmont, CA, p 64

    Google Scholar 

  7. Fernando RL, Garrick DJ. Bayesian methods applied to GWAS. In: Gondro C (ed) Genome-wide association studies and genomic prediction. Methods Mol Biol 1019:235–272

    Google Scholar 

  8. Sorenson D, Gianola D (2002) Likelihood, Bayesian and MCMC methods in quantitative genetics. Springer, New York, p 740. ISBN 0-387-954406

    Google Scholar 

  9. Illumina (2006) Technical Note: “TOP/BOT” strand and “A/B” allele. http://www.illumina.com/documents/products/technotes/technote_topbot.pdf. Accessed 16 May 2012

  10. Pongpanich M, Sullivan PF, Tzeng JY (2010) A quality control algorithm for filtering SNPs in genome-wide association studies. Bioinformatics 26:1731–1737

    Article  PubMed  CAS  Google Scholar 

  11. Haley CS, Knott SA (1992) A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69:315–324

    Article  PubMed  CAS  Google Scholar 

  12. Marchini J, Howie B (2010) Genotype imputation for genome-wide association studies. Nat Rev Genet 11:499–511

    Article  PubMed  CAS  Google Scholar 

  13. Weller JI, Kashi Y, Soller M (1990) Power of daughter and granddaughter designs for determining linkage between marker loci and quantitative trait loci in dairy cattle. J Dairy Sci 1990(73):2525–2537

    Article  Google Scholar 

  14. Garrick DJ, Taylor JF, Fernando RL (2009) Deregressing estimated breeding values and weighting information for genomic regression analyses. Genet Sel Evol 41:55

    Article  PubMed  Google Scholar 

  15. Ostersen T, Christensen OF, Henryon M, Su G, Madsen P (2011) Deregressed EBV as the response variable yield more reliable genomic predictions than traditional EBV in pure-bred pigs. Genet Sel Evol 43:38

    Article  PubMed  Google Scholar 

  16. Gilmour AR, Gogel BJ, Cullis BR, Thompson R (2008) ASReml user guide release 3.0. VSN, Hemel Hempstead

    Google Scholar 

  17. de los Campos G, Naya H, Gianola D, Crossa J, Legarra A, Manfredi E, Weigel K, Cotes J (2009) Predicting quantitative traits with regression models for dense molecular markers and pedigree. Genetics 182:375–385

    Article  PubMed  Google Scholar 

  18. Henderson CR (1984) Applications of linear models in animal breeding. University of Guelph, Guelph, ON

    Google Scholar 

  19. Fernando RL, Habier D, Stricker C, Dekkers JCM, Totir LR (2007) Genomic selection. Acta Agric Scand A Anim Sci 57:192–195

    CAS  Google Scholar 

  20. Gianola D, de los Campos G, Hill WG, Manfredi E, Fernando R (2009) Additive genetic variability and the Bayesian alphabet. Genetics 183:347–363

    Article  PubMed  Google Scholar 

  21. ter Braak CJF, Boer MP, Bink MCAM (2005) Extending Xu’s Bayesian model for estimating polygenic effects using markers of the entire genome. Genetics 170:1435–1438

    Article  PubMed  Google Scholar 

  22. Xu S (2007) An empirical Bayes method for estimating epistatic effects of quantitative trait loci. Biometrics 63:513–521

    Article  PubMed  CAS  Google Scholar 

  23. Habier D, Fernando RL, Kizilkaya K, Garrick DJ (2011) Extension of the Bayesian alphabet for genomic selection. BMC Bioinformatics 12:186

    Article  PubMed  Google Scholar 

  24. Hoeschele I, Tier B (1995) Estimation of variance components of threshold characters by marginal posterior modes and means via Gibbs sampling. Genet Sel Evol 27:519–540

    Article  Google Scholar 

  25. Hayes BJ, Pryce J, Chamberlain AJ, Bowman PJ, Goddard ME (2010) Genetic architecture of complex traits and accuracy of genomic prediction: coat colour, milk-fat percentage, and type in Holstein cattle as contrasting model traits. PLoS Genet 6(9):e1001139

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Garrick, D.J., Fernando, R.L. (2013). Implementing a QTL Detection Study (GWAS) Using Genomic Prediction Methodology. In: Gondro, C., van der Werf, J., Hayes, B. (eds) Genome-Wide Association Studies and Genomic Prediction. Methods in Molecular Biology, vol 1019. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-447-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-447-0_11

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-446-3

  • Online ISBN: 978-1-62703-447-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics