Skip to main content

Lentiviral Vector Production, Titration, and Transduction of Primary Neurons

  • Protocol
  • First Online:
Neural Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1018))

Abstract

Lentiviral vectors have become very useful tools for transgene delivery. Based on their ability to transduce both dividing and nondividing cells and to produce long-term transgene expression, lentiviruses have found numerous applications in the biomedical sciences, including developmental neuroscience. This protocol describes how to prepare lentiviral vectors by calcium phosphate transfection and to concentrate viral particles by ultracentrifugation. Functional vector titers can then be determined by methods such as fluorescence-activated cell sorting or immunostaining. Effective titers in the range of 108–109 infectious units/ml can be routinely obtained using these protocols. Finally, we describe the infection of primary neuronal cultures with lentiviral vectors resulting in 85–90 % cell transduction using appropriate multiplicities of infection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lewis P, Hensel M, Emerman M (1992) Human immunodeficiency virus infection of cells arrested in the cell cycle. EMBO J 11(8):3053–3058

    PubMed  CAS  Google Scholar 

  2. Weinberg JB, Matthews TJ, Cullen BR, Malim MH (1991) Productive human immunodeficiency virus type 1 (HIV-1) infection of nonproliferating human monocytes. J Exp Med 174(6):1477–1482

    Article  PubMed  CAS  Google Scholar 

  3. Matrai J, Chuah MK, VandenDriessche T (2010) Recent advances in lentiviral vector development and applications. Mol Ther 18(3):477–490

    Article  PubMed  CAS  Google Scholar 

  4. Delenda C (2004) Lentiviral vectors: optimization of packaging, transduction and gene expression. J Gene Med 6(Suppl 1):S125–S138

    Article  PubMed  CAS  Google Scholar 

  5. Zaiss AK, Son S, Chang LJ (2002) RNA 3′ readthrough of oncoretrovirus and lentivirus: implications for vector safety and efficacy. J Virol 76(14):7209–7219

    Article  PubMed  CAS  Google Scholar 

  6. Zufferey R, Dull T, Mandel RJ, Bukovsky A, Quiroz D, Naldini L, Trono D (1998) Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J Virol 72(12):9873–9880

    PubMed  CAS  Google Scholar 

  7. Frecha C, Szecsi J, Cosset FL, Verhoeyen E (2008) Strategies for targeting lentiviral vectors. Curr Gene Ther 8(6):449–460

    Article  PubMed  CAS  Google Scholar 

  8. Tiscornia G, Singer O, Verma IM (2006) Production and purification of lentiviral vectors. Nat Protoc 1(1):241–245

    Article  PubMed  CAS  Google Scholar 

  9. Zimmermann K, Scheibe O, Kocourek A, Muelich J, Jurkiewicz E, Pfeifer A (2011) Highly efficient concentration of lenti- and retroviral vector preparations by membrane adsorbers and ultrafiltration. BMC Biotechnol 11(1):55

    Article  PubMed  CAS  Google Scholar 

  10. Ichim CV, Wells RA (2011) Generation of high-titer viral preparations by concentration using successive rounds of ultracentrifugation. J Transl Med 9:137

    Article  PubMed  Google Scholar 

  11. Geraerts M, Willems S, Baekelandt V, Debyser Z, Gijsbers R (2006) Comparison of lentiviral vector titration methods. BMC Biotechnol 6:34

    Article  PubMed  Google Scholar 

  12. Logan AC, Nightingale SJ, Haas DL, Cho GJ, Pepper KA, Kohn DB (2004) Factors influencing the titer and infectivity of lentiviral vectors. Hum Gene Ther 15(10):976–988

    Article  PubMed  CAS  Google Scholar 

  13. Scherr M, Battmer K, Blomer U, Ganser A, Grez M (2001) Quantitative determination of lentiviral vector particle numbers by real-time PCR. Biotechniques 31(3):520, 522, 524, passim

    Google Scholar 

  14. Ricks DM, Kutner R, Zhang XY, Welsh DA, Reiser J (2008) Optimized lentiviral transduction of mouse bone marrow-derived mesenchymal stem cells. Stem Cells Dev 17(3):441–450

    Article  PubMed  CAS  Google Scholar 

  15. Radcliffe PA, Sion CJ, Wilkes FJ, Custard EJ, Beard GL, Kingsman SM, Mitrophanous KA (2008) Analysis of factor VIII mediated suppression of lentiviral vector titres. Gene Ther 15(4):289–297

    Article  PubMed  CAS  Google Scholar 

  16. Wang W, Qu Q, Smith FI, Kilpatrick DL (2005) Self-inactivating lentiviruses: versatile vectors for quantitative transduction of cerebellar granule neurons and their progenitors. J Neurosci Methods 149(2):144–153

    Article  PubMed  Google Scholar 

  17. Lizee G, Aerts JL, Gonzales MI, Chinnasamy N, Morgan RA, Topalian SL (2003) Real-time quantitative reverse transcriptase-polymerase chain reaction as a method for determining lentiviral vector titers and measuring transgene expression. Hum Gene Ther 14(6):497–507

    Article  PubMed  CAS  Google Scholar 

  18. Kutner RH, Zhang XY, Reiser J (2009) Production, concentration and titration of pseudotyped HIV-1-based lentiviral vectors. Nat Protoc 4(4):495–505

    Article  PubMed  CAS  Google Scholar 

  19. Wang W, Stock RE, Gronostajski RM, Wong YW, Schachner M, Kilpatrick DL (2004) A role for nuclear factor I in the intrinsic control of cerebellar granule neuron gene expression. J Biol Chem 279(51):53491–53497

    Article  PubMed  CAS  Google Scholar 

  20. Wang W, Mullikin-Kilpatrick D, Crandall JE, Gronostajski RM, Litwack ED, Kilpatrick DL (2007) Nuclear factor I coordinates multiple phases of cerebellar granule cell development via regulation of cell adhesion molecules. J Neurosci 27(23):6115–6127

    Article  PubMed  CAS  Google Scholar 

  21. Kumar P, Woon-Khiong C (2011) Optimization of lentiviral vectors generation for biomedical and clinical research purposes: contemporary trends in technology development and applications. Curr Gene Ther 11(2):144–153

    Article  PubMed  CAS  Google Scholar 

  22. Osten P, Dittgen T, Licznerski P (2006) Lentivirus-based genetic manipulations in neurons in vivo. In: Kittler JT, Moss SJ, editors. The Dynamic Synapse: Molecular Methods in Ionotropic Receptor Biology. Boca Raton (FL): CRC Press; 2006. Chapter 13.

    Google Scholar 

  23. Wang W, Shin Y, Shi M, Kilpatrick DL (2011) Temporal control of a dendritogenesis-linked gene via REST-dependent regulation of nuclear factor I occupancy. Mol Biol Cell 22(6):868–879

    Article  PubMed  CAS  Google Scholar 

  24. Zufferey R, Donello JE, Trono D, Hope TJ (1999) Woodchuck hepatitis virus posttranscriptional regulatory element enhances expression of transgenes delivered by retroviral vectors. J Virol 73(4):2886–2892

    PubMed  CAS  Google Scholar 

  25. VandenDriessche T, Thorrez L, Naldini L, Follenzi A, Moons L, Berneman Z, Collen D, Chuah MK (2002) Lentiviral vectors containing the human immunodeficiency virus type-1 central polypurine tract can efficiently ­transduce nondividing hepatocytes and ­antigen-presenting cells in vivo. Blood 100(3):813–822

    Article  PubMed  CAS  Google Scholar 

  26. Jordan M, Wurm F (2004) Transfection of adherent and suspended cells by calcium phosphate. Methods 33(2):136–143

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Ding, B., Kilpatrick, D.L. (2013). Lentiviral Vector Production, Titration, and Transduction of Primary Neurons. In: Zhou, R., Mei, L. (eds) Neural Development. Methods in Molecular Biology, vol 1018. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-444-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-444-9_12

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-443-2

  • Online ISBN: 978-1-62703-444-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics