Skip to main content

Identification and Quantitation of Signal Molecule-Dependent Protein Phosphorylation

  • Protocol
  • First Online:
Cyclic Nucleotide Signaling in Plants

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1016))

Abstract

Phosphoproteomics is a fast-growing field that aims at characterizing phosphorylated proteins in a cell or a tissue at a given time. Phosphorylation of proteins is an important regulatory mechanism in many cellular processes. Gel-free phosphoproteome technique involving enrichment of phosphopeptide coupled with mass spectrometry has proven to be invaluable to detect and characterize phosphorylated proteins. In this chapter, a gel-free quantitative approach involving 15N metabolic labelling in combination with phosphopeptide enrichment by titanium dioxide (TiO2) and their identification by MS is described. This workflow can be used to gain insights into the role of signalling molecules such as cyclic nucleotides on regulatory networks through the identification and quantification of responsive phospho(proteins).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Besant PG, Tan E, Attwood PV (2003) Mammalian protein histidine kinases. Int J Biochem Cell Biol 35:297–309

    Article  PubMed  CAS  Google Scholar 

  2. Cohen P (2000) The regulation of protein function by multisite phosphorylation—a 25 year update. Trends Biochem Sci 25:596–601

    Article  PubMed  CAS  Google Scholar 

  3. Dhanasekaran N, Reddy EP (1998) Signaling by dual specificity kinases. Oncogene 17:1447–1455

    Article  PubMed  CAS  Google Scholar 

  4. Ubersax JA, Ferrell JE (2007) Mechanisms of specificity in protein phosphorylation. Nat Rev Mol Cell Biol 8:530–541

    Article  PubMed  CAS  Google Scholar 

  5. Cieśla J, Frączyk T, Rode W (2011) Phosphorylation of basic amino acid residues in proteins: important but easily missed. Acta Biochim Pol 58:137–148

    PubMed  Google Scholar 

  6. Nakashima K, Ito Y, Yamaguchi-Shinozaki K (2009) Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol 149:88–95

    Article  PubMed  CAS  Google Scholar 

  7. Heemskerk AAM, Busnel JM, Schoenmaker B, Derks RJE, Klychnikov O, Hensbergen PJ, Deelder AM, Mayboroda OA (2012) Ultra-low flow electrospray ionization-mass spectrometry for improved ionization efficiency in phosphoproteomics. Anal Chem 84:4552–4559

    Article  PubMed  CAS  Google Scholar 

  8. Thelemann A, Petti F, Griffin G, Iwata K, Hunt T et al (2005) Phosphotyrosine signaling networks in epidermal growth factor receptor overexpressing squamous carcinoma cells. Mol Cell Proteomics 4:356–376

    Article  PubMed  CAS  Google Scholar 

  9. Beausoleil SA, Jedrychowski M, Schwartz D, Elias JE, Villen J et al (2004) Large-scale characterization of HeLa cell nuclear phosphoproteins. Proc Natl Acad Sci U S A 101:12130–12135

    Article  PubMed  CAS  Google Scholar 

  10. Larsen MR, Thingholm TE, Jensen ON, Roepstorff P, Jorgensen TJD (2005) Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Mol Cell Proteomics 4:873–886

    Article  PubMed  CAS  Google Scholar 

  11. Thingholm TE, Jorgensen TJ, Jensen ON, Larsen MR (2006) Highly selective enrichment of phosphorylated peptides using titanium dioxide. Nat Protoc 1:1929–1935

    Article  PubMed  CAS  Google Scholar 

  12. Ficarro SB, McCleland ML, Stukenberg PT, Burke DJ, Ross MM et al (2002) Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat Biotechnol 20:301–305

    Article  PubMed  CAS  Google Scholar 

  13. Zheng HY, Hu P, Quinn DF, Wang YK (2005) Phosphotyrosine proteomic study of interferon alpha signaling pathway using a combination of immunoprecipitation and immobilized metal affinity chromatography. Mol Cell Proteomics 4:721–730

    Article  PubMed  CAS  Google Scholar 

  14. Old WM, Meyer-Arendt K, Aveline-Wolf L, Pierce KG, Mendoza A et al (2005) Comparison of label-free methods for quantifying human proteins by shotgun proteomics. Mol Cell Proteomics 4:1487–1502

    Article  PubMed  CAS  Google Scholar 

  15. Silva JC, Denny R, Dorschel C, Gorenstein MV, Li GZ et al (2006) Simultaneous qualitative and quantitative analysis of the Escherichia coli proteome: a sweet tale. Mol Cell Proteomics 5:589–607

    PubMed  CAS  Google Scholar 

  16. Ross PL, Huang YN, Marchese JN, Williamson B, Parker K et al (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3:1154–1169

    Article  PubMed  CAS  Google Scholar 

  17. Thompson A, Schafer J, Kuhn K, Kienle S, Schwarz J et al (2003) Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal Chem 75:1895–1904

    Article  PubMed  CAS  Google Scholar 

  18. Conrads TP, Alving K, Veenstra TD, Belov ME, Anderson GA et al (2001) Quantitative analysis of bacterial and mammalian proteomes using a combination of cysteine affinity tags and 15N-metabolic labeling. Anal Chem 73:2132–2139

    Article  PubMed  CAS  Google Scholar 

  19. Krijgsveld J, Ketting RF, Mahmoudi T, Johansen J, Artal-Sanz M et al (2003) Metabolic labeling of C. elegans and D. melanogaster for quantitative proteomics. Nat Biotechnol 21:927–931

    Article  PubMed  CAS  Google Scholar 

  20. Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H et al (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1:376–386

    Article  PubMed  CAS  Google Scholar 

  21. Haegler K, Mueller NS, Maccarrone G, Hunyadi-Gulyas E, Webhofer C et al (2009) QuantiSpec—quantitative mass spectrometry data analysis of N-15-metabolically labeled proteins. J Proteomics 71:601–608

    Article  PubMed  CAS  Google Scholar 

  22. Pan CL, Kora G, McDonald WH, Tabb DL, VerBerkmoes NC et al (2006) ProRata: a quantitative proteomics program for accurate protein abundance ratio estimation with confidence interval evaluation. Anal Chem 78:7121–7131

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Groen, A., Thomas, L., Lilley, K., Marondedze, C. (2013). Identification and Quantitation of Signal Molecule-Dependent Protein Phosphorylation. In: Gehring, C. (eds) Cyclic Nucleotide Signaling in Plants. Methods in Molecular Biology, vol 1016. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-441-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-441-8_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-440-1

  • Online ISBN: 978-1-62703-441-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics