Skip to main content

Morphometric Analysis of Huntington’s Disease Neurodegeneration in Drosophila

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1017))

Abstract

Huntington’s disease (HD) is an autosomal dominant neurodegenerative disorder. The HD gene encodes the huntingtin protein (HTT) that contains polyglutamine tracts of variable length. Expansions of the CAG repeat near the amino terminus to encode 40 or more glutamines (polyQ) lead to disease. At least eight other expanded polyQ diseases have been described [1]. HD can be faithfully modeled in Drosophila with the key features of the disease such as late onset, slowly progressing degeneration, formation of abnormal protein aggregates and the dependence on polyQ length being evident. Such invertebrate model organisms provide powerful platforms to explore neurodegenerative mechanisms and to productively speed the identification of targets and agents that are likely to be effective at treating diseases in humans. Here we describe an optical pseudopupil method that can be readily quantified to provide a fast and sensitive assay for assessing the degree of HD neurodegeneration in vivo. We discuss detailed crossing schemes as well as factors including different drivers, various constructs, the number of UAS sites, genetic background, and temperature that can influence the result of pseudopupil measurements.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Paulson HL, Bonini NM, Roth KA (2000) Polyglutamine disease and neuronal cell death. Proc Natl Acad Sci USA 97(24):12957–12958. doi:10.1073/pnas.210395797 210395797 [pii]

    Article  PubMed  CAS  Google Scholar 

  2. Gatchel JR, Zoghbi HY (2005) Diseases of unstable repeat expansion: mechanisms and common principles. Nat Rev Genet 6(10):743–755. doi:nrg1691 [pii] 10.1038/nrg1691

    Article  PubMed  CAS  Google Scholar 

  3. Macdonald ME, Ambrose CM, Duyao MP, Myers RH, Lin C, Srinidhi L, Barnes G, Taylor SA, James M, Groot N, Macfarlane H, Jenkins B, Anderson MA, Wexler NS, Gusella JF, Bates GP, Baxendale S, Hummerich H, Kirby S, North M, Youngman S, Mott R, Zehetner G, Sedlacek Z, Poustka A, Frischauf AM, Lehrach H, Buckler AJ, Church D, Doucettestamm L, Odonovan MC, Ribaramirez L, Shah M, Stanton VP, Strobel SA, Draths KM, Wales JL, Dervan P, Housman DE, Altherr M, Shiang R, Thompson L, Fielder T, Wasmuth JJ, Tagle D, Valdes J, Elmer L, Allard M, Castilla L, Swaroop M, Blanchard K, Collins FS, Snell R, Holloway T, Gillespie K, Datson N, Shaw D, Harper PS (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntingtons-disease chromosomes. Cell 72(6):971–983

    Article  Google Scholar 

  4. Gusella JF, Macdonald ME (1995) Huntingtons-disease. Semin Cell Biol 6(1):21–28

    Article  PubMed  CAS  Google Scholar 

  5. Kremer B, Goldberg P, Andrew SE, Theilmann J, Telenius H, Zeisler J, Squitieri F, Lin BY, Bassett A, Almqvist E, Bird TD, Hayden MR (1994) A worldwide study of the Huntingtons-disease mutation—the sensitivity and specificity of measuring Cag repeats. N Engl J Med 330(20):1401–1406

    Article  PubMed  CAS  Google Scholar 

  6. Nagai Y, Fujikake N, Ohno K, Higashiyama H, Popiel HA, Rahadian J, Yamaguchi M, Strittmatter WJ, Burke JR, Toda T (2003) Prevention of polyglutamine oligomerization and neurodegeneration by the peptide inhibitor QBP1 in Drosophila. Hum Mol Genet 12(11):1253–1259

    Article  PubMed  CAS  Google Scholar 

  7. Jackson GR, Salecker I, Dong XZ, Yao X, Arnheim N, Faber PW, MacDonald ME, Zipursky SL (1998) Polyglutamine-expanded human huntingtin transgenes induce degeneration of Drosophila photoreceptor neurons. Neuron 21(3):633–642

    Article  PubMed  CAS  Google Scholar 

  8. Marsh JL, Walker H, Theisen H, Zhu YZ, Fielder T, Purcell J, Thompson LM (2000) Expanded polyglutamine peptides alone are intrinsically cytotoxic and cause neurodegeneration in Drosophila. Hum Mol Genet 9(1):13–25

    Article  PubMed  CAS  Google Scholar 

  9. Warrick JM, Paulson HL, Gray-Board GL, Bui QT, Fischbeck KH, Pittman RN, Bonini NM (1998) Expanded polyglutamine protein forms nuclear inclusions and causes neural degeneration in Drosophila. Cell 93(6):939–949

    Article  PubMed  CAS  Google Scholar 

  10. Kazemi-Esfarjani P, Benzer S (2000) Genetic suppression of polyglutamine toxicity in Drosophila. Science 287(5459):1837–1840. doi:8327 [pii]

    Article  PubMed  CAS  Google Scholar 

  11. Steffan JS, Bodai L, Pallos J, Poelman M, McCampbell A, Apostol BL, Kazantsev A, Schmidt E, Zhu YZ, Greenwald M, Kurokawa R, Housman DE, Jackson GR, Marsh JL, Thompson LM (2001) Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila. Nature 413(6857):739–743

    Article  PubMed  CAS  Google Scholar 

  12. Lee WCM, Yoshihara M, Littleton JT (2004) Cytoplasmic aggregates trap polyglutamine-containing proteins and block axonal transport in a Drosophila model of Huntington’s disease. Proc Natl Acad Sci USA 101(9):3224–3229

    Article  PubMed  CAS  Google Scholar 

  13. Zhang S, Binari R, Zhou R, Perrimon N (2010) A genomewide RNA interference screen for modifiers of aggregates formation by mutant Huntingtin in Drosophila. Genetics 184(4):1165–1179. doi:genetics.109.112516 [pii] 10.1534/genetics.109.112516

    Article  PubMed  CAS  Google Scholar 

  14. Romero E, Cha GH, Verstreken P, Ly CV, Hughes RE, Bellen HJ, Botas J (2008) Suppression of neurodegeneration and increased neurotransmission caused by expanded full-length huntingtin accumulating in the cytoplasm. Neuron 57(1):27–40. doi:S0896-6273(07)00985-3 [pii] 10.1016/j.neuron.2007.11.025

    Article  PubMed  CAS  Google Scholar 

  15. Mugat B, Parmentier ML, Bonneaud N, Chan HY, Maschat F (2008) Protective role of Engrailed in a Drosophila model of Huntington’s disease. Hum Mol Genet 17(22):3601–3616. doi:ddn255 [pii] 10.1093/hmg/ddn255

    Article  PubMed  CAS  Google Scholar 

  16. Franceschini N (1972) Information processing in the visual systems of arthropods. Springer, Berlin

    Google Scholar 

  17. Agrawal N, Pallos J, Slepko N, Apostol BL, Bodai L, Chang LW, Chiang AS, Thompson LM, Marsh JL (2005) Identification of combinatorial drug regimens for treatment of Huntington’s disease using Drosophila. Proc Natl Acad Sci USA 102(10):3777–3781. doi:10.1073/Pnas.0500055102

    Article  PubMed  CAS  Google Scholar 

  18. Brand AH, Perrimon N (1993) Targeted gene-expression as a means of altering cell fates and generating dominant phenotypes. Development 118(2):401–415

    PubMed  CAS  Google Scholar 

  19. Marsh JL, Thompson LM (2004) Can flies help humans treat neurodegenerative diseases? Bioessays 26(5):485–496. doi:10.1002/Bies.20029

    Article  PubMed  CAS  Google Scholar 

  20. Lin DM, Goodman CS (1994) Ectopic and increased expression of Fasciclin II alters motoneuron growth cone guidance. Neuron 13(3):507–523. doi:0896-6273(94)90022-1 [pii]

    Article  PubMed  CAS  Google Scholar 

  21. Fernandez-Funez P, Nino-Rosales ML, de Gouyon B, She WC, Luchak JM, Martinez P, Turiegano E, Benito J, Capovilla M, Skinner PJ, McCall A, Canal I, Orr HT, Zoghbi HY, Botas J (2000) Identification of genes that modify ataxin-1-induced neurodegeneration. Nature 408(6808):101–106

    Article  PubMed  CAS  Google Scholar 

  22. Karpilow JM, Pimentel AC, Shamloula HK, Venkatesh TR (1996) Neuronal development in the Drosophila compound eye: photoreceptor cells R1, R6, and R7 fail to differentiate in the Retina aberrant in pattern (rap) mutant. J Neurobiol 31(2):149–165

    Article  PubMed  CAS  Google Scholar 

  23. Spradling AC, Rubin GM (1983) The effect of chromosomal position on the expression of the Drosophila xanthine dehydrogenase gene. Cell 34(1):47–57

    Article  PubMed  CAS  Google Scholar 

  24. Groth AC, Fish M, Nusse R, Calos MP (2004) Construction of transgenic Drosophila by using the site-specific integrase from phage phi C31. Genetics 166(4):1775–1782

    Article  PubMed  CAS  Google Scholar 

  25. Duffy JB (2002) GAL4 system in Drosophila: a fly geneticist’s Swiss army knife. Genesis 34(1–2):1–15. doi:10.1002/Gene.1015

    Article  PubMed  CAS  Google Scholar 

  26. Matsumoto K, Tohe A, Oshima Y (1978) Genetic-control of galactokinase synthesis in Saccharomyces cerevisiae—evidence for constitutive expression of positive regulatory gene Gal4. J Bacteriol 134(2):446–457

    PubMed  CAS  Google Scholar 

  27. Elliott DA, Brand AH (2008) The GAL4 system: a versatile system for the expression of genes. Methods Mol Biol 420:79–95. doi:10.1007/978-1-59745-583-1_5

    Article  PubMed  CAS  Google Scholar 

  28. McGuire SE, Le PT, Osborn AJ, Matsumoto K, Davis RL (2003) Spatiotemporal rescue of memory dysfunction in Drosophila. Science 302(5651):1765–1768

    Article  PubMed  CAS  Google Scholar 

  29. Ito K, Awano W, Suzuki K, Hiromi Y, Yamamoto D (1997) The Drosophila mushroom body is a quadruple structure of clonal units each of which contains a virtually identical set of neurones and glial cells. Development 124(4):761–771

    PubMed  CAS  Google Scholar 

  30. Pignoni F, Zipursky SL (1997) Induction of Drosophila eye development by Decapentaplegic. Development 124(2):271–278

    PubMed  CAS  Google Scholar 

  31. Osterwalder T, Yoon KS, White BH, Keshishian H (2001) A conditional tissue-specific transgene expression system using inducible GAL4. Proc Natl Acad Sci USA 98(22):12596–12601

    Article  PubMed  CAS  Google Scholar 

  32. Roman G, Endo K, Zong L, Davis RL (2001) P{Switch}, a system for spatial and temporal control of gene expression in Drosophila melanogaster. Proc Natl Acad Sci USA 98(22):12602–12607

    Article  PubMed  CAS  Google Scholar 

  33. Rorth P, Szabo K, Bailey A, Laverty T, Rehm J, Rubin GM, Weigmann K, Milan M, Benes V, Ansorge W, Cohen SM (1998) Systematic gain-of-function genetics in Drosophila. Development 125(6):1049–1057

    PubMed  CAS  Google Scholar 

  34. Rorth P (1996) A modular misexpression screen in Drosophila detecting tissue-specific phenotypes. Proc Natl Acad Sci USA 93(22):12418–12422

    Article  PubMed  CAS  Google Scholar 

  35. Ando R, Hama H, Yamamoto-Hino M, Mizuno H, Miyawaki A (2002) An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein. Proc Natl Acad Sci USA 99(20):12651–12656. doi:10.1073/Pnas.202320599

    Article  PubMed  CAS  Google Scholar 

  36. Ni JQ, Liu LP, Binari R, Hardy R, Shim HS, Cavallaro A, Booker M, Pfeiffer BD, Markstein M, Wang H, Villalta C, Laverty TR, Perkins LA, Perrimon N (2009) A Drosophila resource of transgenic RNAi lines for neurogenetics. Genetics 182(4):1089–1100. doi:10.1534/Genetics.109.103630

    Article  PubMed  CAS  Google Scholar 

  37. Pfeiffer BD, Ngo TTB, Hibbard KL, Murphy C, Jenett A, Truman JW, Rubin GM (2010) Refinement of tools for targeted gene expression in Drosophila. Genetics 186(2):735–755. doi:10.1534/Genetics.110.119917

    Article  PubMed  CAS  Google Scholar 

  38. Robinow S, White K (1988) The locus elav of Drosophila melanogaster is expressed in neurons at all developmental stages. Dev Biol 126(2):294–303

    Article  PubMed  CAS  Google Scholar 

  39. Lee WC, Yoshihara M, Littleton JT (2004) Cytoplasmic aggregates trap polyglutamine-containing proteins and block axonal transport in a Drosophila model of Huntington’s disease. Proc Natl Acad Sci USA 101(9):3224–3229. doi:10.1534/Genetics.110.119917

    Article  PubMed  CAS  Google Scholar 

  40. Bonini NM, Fortini ME (2003) Human neurodegenerative disease modeling using Drosophila. Annu Rev Neurosci 26:627–656. doi:10.1146/annurev.neuro.26.041002.131425 041002.131425 [pii]

    Article  PubMed  CAS  Google Scholar 

  41. Ellis MC, Oneill EM, Rubin GM (1993) Expression of Drosophila glass protein and evidence for negative regulation of its activity in nonneuronal cells by another DNA-binding protein. Development 119(3):855–865

    PubMed  CAS  Google Scholar 

  42. Sang TK, Li C, Liu W, Rodriguez A, Abrams JM, Zipursky SL, Jackson GR (2005) Inactivation of Drosophila Apaf-1 related killer suppresses formation of polyglutamine aggregates and blocks polyglutamine pathogenesis. Hum Mol Genet 14(3):357–372. doi:ddi032 [pii] 10.1093/hmg/ddi032

    Article  PubMed  CAS  Google Scholar 

  43. Kirschfeld K, Feiler R, Franceschini N (1978) Photo-stable pigment within rhabdomere of fly photoreceptors No 7. J Comp Physiol 125(3):275–284

    Article  CAS  Google Scholar 

  44. Chyb S, Hevers W, Forte M, Wolfgang WJ, Selinger Z, Hardie RC (1999) Modulation of the light response by cAMP in Drosophila photoreceptors. J Neurosci 19(20):8799–8807

    PubMed  CAS  Google Scholar 

  45. Slepko N, Bhattacharyya AM, Jackson GR, Steffan JS, Marsh JL, Thompson LM, Wetzel R (2006) Normal-repeat-length polyglutamine peptides accelerate aggregation nucleation and cytotoxicity of expanded polyglutamine proteins. Proc Natl Acad Sci USA 103(39):14367–14372. doi:10.1073/Pnas.0602348103

    Article  PubMed  CAS  Google Scholar 

  46. Branco J, Al-Ramahi I, Ukani L, Perez AM, Fernandez-Funez P, Rincon-Limas D, Botas J (2008) Comparative analysis of genetic modifiers in Drosophila points to common and distinct mechanisms of pathogenesis among polyglutamine diseases. Hum Mol Genet 17(3):376–390. doi:ddm315 [pii] 10.1093/hmg/ddm315

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Song, W. et al. (2013). Morphometric Analysis of Huntington’s Disease Neurodegeneration in Drosophila . In: Hatters, D., Hannan, A. (eds) Tandem Repeats in Genes, Proteins, and Disease. Methods in Molecular Biology, vol 1017. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-438-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-438-8_3

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-437-1

  • Online ISBN: 978-1-62703-438-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics