Skip to main content

Analyzing Modifiers of Protein Aggregation in C. elegans by Native Agarose Gel Electrophoresis

  • Protocol
  • First Online:
Tandem Repeats in Genes, Proteins, and Disease

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1017))

Abstract

The accumulation of specific aggregation-prone proteins during aging is thought to be involved in several diseases, most notably Alzheimer’s and Parkinson’s disease as well as polyglutamine expansion disorders such as Huntington’s disease. Caenorhabditis elegans disease models with transgenic expression of fluorescently tagged aggregation-prone proteins have been used to screen for genetic modifiers of aggregation. To establish the role of modifying factors in the generation of aggregation intermediates, a method has been developed using native agarose gel electrophoresis (NAGE) that enables parallel screening of aggregation patterns of fluorescently labeled aggregation-prone proteins. Together with microscopy-based genetic screens this method can be used to identify modifiers of protein aggregation and characterize their molecular function. Although described here for analyzing aggregates in C. elegans, NAGE can be adjusted for use in other model organisms as well as for cultured cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 75:333–366

    Article  PubMed  CAS  Google Scholar 

  2. Nollen EA, Garcia SM, van Haaften G, Kim S, Chavez A, Morimoto RI, Plasterk RH (2004) Genome-wide RNA interference screen identifies previously undescribed regulators of polyglutamine aggregation. Proc Natl Acad Sci USA 101:6403–6408

    Article  PubMed  CAS  Google Scholar 

  3. van Ham TJ, Thijssen KL, Breitling R, Hofstra RM, Plasterk RH, Nollen EA (2008) C. elegans model identifies genetic modifiers of alpha-synuclein inclusion formation during aging. PLoS Genet 4:e1000027

    Article  PubMed  Google Scholar 

  4. Wang J, Farr GW, Hall DH, Li F, Furtak K, Dreier L, Horwich AL (2009) An ALS-linked mutant sod1 produces a locomotor defect associated with aggregation and synaptic dysfunction when expressed in neurons of Caenorhabditis elegans. PLoS Genet 5:e1000350

    Article  PubMed  Google Scholar 

  5. Silva MC, Fox S, Beam M, Thakkar H, Amaral MD, Morimoto RI (2011) A genetic screening strategy identifies novel regulators of the proteostasis network. PLoS Genet 7:e1002438

    Article  PubMed  CAS  Google Scholar 

  6. van Ham TJ, Holmberg MA, van der Goot AT, Teuling E, Garcia-Arencibia M, Kim HE, Du D, Thijssen KL, Wiersma M, Burggraaff R, van Bergeijk P, van Rheenen J, Jerre van Veluw G, Hofstra RM, Rubinsztein DC, Nollen EA (2010) Identification of MOAG-4/SERF as a regulator of age-related proteotoxicity. Cell 142:601–612

    Article  PubMed  Google Scholar 

  7. Kamath RS, Ahringer J (2003) Genome-wide RNAi screening in Caenorhabditis elegans. Methods 30:313–321

    Article  PubMed  CAS  Google Scholar 

  8. Pothof J, van Haaften G, Thijssen K, Kamath RS, Fraser AG, Ahringer J, Plasterk RHA, Tijsterman M (2003) Identification of genes that protect the C. elegans genome against mutations by genome-wide RNAi. Genes Dev 17:443–448

    Article  PubMed  CAS  Google Scholar 

  9. van Haaften G, Vastenhouw NL, Nollen EA, Plasterk RH, Tijsterman M (2004) Gene interactions in the DNA damage-response pathway identified by genome-wide RNA-interference analysis of synthetic lethality. Proc Natl Acad Sci USA 101:12992–12996

    Article  PubMed  Google Scholar 

  10. Jorgensen EM, Mango SE (2002) The art and design of genetic screens: Caenorhabditis elegans. Nat Rev Genet 3:356–369

    Article  PubMed  CAS  Google Scholar 

  11. Gidalevitz T, Krupinski T, Garcia S, Morimoto RI (2009) Destabilizing protein polymorphisms in the genetic background direct phenotypic expression of mutant SOD1 toxicity. PLoS Genet 5:e1000399

    Article  PubMed  Google Scholar 

  12. Wanker EE, Scherzinger E, Heiser V, Sittler A, Eickhoff H, Lehrach H (1999) Membrane filter assay for detection of amyloid-like polyglutamine-containing protein aggregates. Methods Enzymol 309:375–386

    Article  PubMed  CAS  Google Scholar 

  13. Bagriantsev SN, Kushnirov VV, Liebman SW (2006) Analysis of amyloid aggregates using agarose gel electrophoresis. Methods Enzymol 412:33–48

    Article  PubMed  CAS  Google Scholar 

  14. Halfmann R, Lindquist S (2008) Screening for amyloid aggregation by Semi-Denaturing Detergent-Agarose Gel Electrophoresis. J Vis Exp (17). pii: 838. doi: 10.3791/838

  15. Weiss A, Klein C, Woodman B, Sathasivam K, Bibel M, Regulier E, Bates GP, Paganetti P (2008) Sensitive biochemical aggregate detection reveals aggregation onset before symptom development in cellular and murine models of Huntington’s disease. J Neurochem 104:846–858

    PubMed  CAS  Google Scholar 

  16. Yerkes S, Vesenka J, Kmiec EB (2010) A stable G-quartet binds to a huntingtin protein fragment containing expanded polyglutamine tracks. J Neurosci Res 88:335–345

    Article  PubMed  CAS  Google Scholar 

  17. Kryndushkin DS, Alexandrov IM, Ter-Avanesyan MD, Kushnirov VV (2003) Yeast [PSI+] prion aggregates are formed by small Sup35 polymers fragmented by Hsp104. J Biol Chem 278:49636–49643

    Article  PubMed  CAS  Google Scholar 

  18. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  PubMed  CAS  Google Scholar 

  19. Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77:71–94

    PubMed  CAS  Google Scholar 

  20. Wittig I, Braun HP, Schagger H (2006) Blue native PAGE. Nat Protoc 1:418–428

    Article  PubMed  CAS  Google Scholar 

  21. Kim R, Yokota H, Kim SH (2000) Electrophoresis of proteins and protein-protein complexes in a native agarose gel. Anal Biochem 282:147–149

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Sally Hill for editing the manuscript, and Renée Sienstra and Olga Sin for critical reading of the manuscript. This project was funded by grants from the Prinses Beatrix Fonds Foundation, an NWO Meervoud grant (E.A.A.N), and a UMCG Rosalind Franklin Fellowship (E.A.A.N.).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Holmberg, M., Nollen, E.A.A. (2013). Analyzing Modifiers of Protein Aggregation in C. elegans by Native Agarose Gel Electrophoresis. In: Hatters, D., Hannan, A. (eds) Tandem Repeats in Genes, Proteins, and Disease. Methods in Molecular Biology, vol 1017. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-438-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-438-8_14

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-437-1

  • Online ISBN: 978-1-62703-438-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics