Skip to main content

Use of Linkage Analysis, Genome-Wide Association Studies, and Next-Generation Sequencing in the Identification of Disease-Causing Mutations

  • Protocol
  • First Online:
Pharmacogenomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1015))

Abstract

For the past two decades, linkage analysis and genome-wide analysis have greatly advanced our knowledge of the human genome. But despite these successes the genetic architecture of diseases remains unknown. More recently, the availability of next-generation sequencing has dramatically increased our capability for determining DNA sequences that range from large portions of one individual’s genome to targeted regions of many genomes in a cohort of interest. In this review, we highlight the successes and shortcomings that have been achieved using genome-wide association studies (GWAS) to identify the variants contributing to disease. We further review the methods and use of new technologies, based on next-generation sequencing, that are becoming increasingly used to expand our knowledge of the causes of genetic disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hindorff LA et al (2009) Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci USA 106:9362–9367

    Article  PubMed  CAS  Google Scholar 

  2. Rommens JM et al (1989) Identification of the cystic fibrosis gene: chromosome walking and jumping. Science 245:1059–1065

    Article  PubMed  CAS  Google Scholar 

  3. Riordan JR et al (1989) Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245:1066–1073

    Article  PubMed  CAS  Google Scholar 

  4. Kerem B et al (1989) Identification of the cystic fibrosis gene: genetic analysis. Science 245:1073–1080

    Article  PubMed  CAS  Google Scholar 

  5. Risch N, Merikangas K (1996) The future of genetic studies of complex human diseases. Science 273:1516–1517

    Article  PubMed  CAS  Google Scholar 

  6. Altmuller J et al (2001) Genomewide scans of complex human diseases: true linkage is hard to find. Am J Hum Genet 69:936–950

    Article  PubMed  CAS  Google Scholar 

  7. Consortium IH (2005) A haplotype map of the human genome. Nature 437:1299–1320

    Article  Google Scholar 

  8. Manolio TA et al (2009) Finding the missing heritability of complex diseases. Nature 461:747–753

    Article  PubMed  CAS  Google Scholar 

  9. Klein RJ et al (2005) Complement factor H polymorphism in age-related macular degeneration. Science 308:385–389

    Article  PubMed  CAS  Google Scholar 

  10. Barrett JC et al (2008) Genome-wide association defines more than 30 distinct susceptibility loci for Crohn’s disease. Nat Genet 40:955–962

    Article  PubMed  CAS  Google Scholar 

  11. Lango AH et al (2010) Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature 467:832–838

    Article  Google Scholar 

  12. Maller J et al (2006) Common variation in three genes, including a noncoding variant in CFH, strongly influences risk of age-related macular degeneration. Nat Genet 38:1055–1059

    Article  PubMed  CAS  Google Scholar 

  13. Jakobsdottir J et al (2009) Interpretation of genetic association studies: markers with replicated highly significant odds ratios may be poor classifiers. PLoS Genet 5:e1000337

    Article  PubMed  Google Scholar 

  14. Rose SP (2006) Commentary: heritability estimates–long past their sell-by date. Int J Epidemiol 35:525–527

    Article  PubMed  Google Scholar 

  15. Genomes Project Consortium, Abecasis GR et al (2010) A map of human genome variation from population-scale sequencing. Nature 467:1061–1073

    Article  PubMed  Google Scholar 

  16. Venter JC et al (2001) The sequence of the human genome. Science 291:1304–1351

    Article  PubMed  CAS  Google Scholar 

  17. Lander ES et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  PubMed  CAS  Google Scholar 

  18. Schloss JA (2008) How to get genomes at one ten-thousandth the cost. Nat Biotechnol 26:1113–1115

    Article  PubMed  CAS  Google Scholar 

  19. Hert DG, Fredlake CP, Barron AE (2008) Advantages and limitations of next-generation sequencing technologies: a comparison of electrophoresis and non-electrophoresis methods. Electrophoresis 29:4618–4626

    Article  PubMed  CAS  Google Scholar 

  20. Pareek CS, Smoczynski R, Tretyn A (2011) Sequencing technologies and genome sequencing. J Appl Genet 52:413–435

    Article  PubMed  CAS  Google Scholar 

  21. Metzker ML (2010) Sequencing technologies—the next generation. Nat Rev Genet 11:31–46

    Article  PubMed  CAS  Google Scholar 

  22. Mardis ER (2008) Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet 9:387–402

    Article  PubMed  CAS  Google Scholar 

  23. Zheng Z et al (2010) Titration-free massively parallel pyrosequencing using trace amounts of starting material. Nucleic Acids Res 38:e137

    Article  PubMed  Google Scholar 

  24. Margulies M et al (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380

    PubMed  CAS  Google Scholar 

  25. Depristo MA et al (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 43:491–498

    Article  PubMed  CAS  Google Scholar 

  26. Ng SB et al (2009) Targeted capture and massively parallel sequencing of 12 human exomes. Nature 461:272–276

    Article  PubMed  CAS  Google Scholar 

  27. Ng SB et al (2009) Exome sequencing identifies the cause of a mendelian disorder. Nat Genet 42:30–35

    Article  PubMed  Google Scholar 

  28. Hoischen A et al (2010) De novo mutations of SETBP1 cause Schinzel-Giedion syndrome. Nat Genet 42:483–485

    Article  PubMed  CAS  Google Scholar 

  29. Bansal V et al (2010) Statistical analysis strategies for association studies involving rare variants. Nat Rev Genet 11:773–785

    Article  PubMed  CAS  Google Scholar 

  30. Nalls MA et al (2011) Imputation of sequence variants for identification of genetic risks for Parkinson’s disease: a meta-analysis of genome-wide association studies. Lancet 377:641–649

    Article  PubMed  Google Scholar 

  31. Su Z et al (2011) Next-generation sequencing and its applications in molecular diagnostics. Expert Rev Mol Diagn 11:333–343

    PubMed  Google Scholar 

  32. Marian AJ (2011) Medical DNA sequencing. Curr Opin Cardiol 26:175–180

    Article  PubMed  Google Scholar 

  33. Diamandis EP (2009) Next-generation sequencing: a new revolution in molecular diagnostics? Clin Chem 55:2088–2092

    Article  PubMed  CAS  Google Scholar 

  34. Choi M et al (2009) Genetic diagnosis by whole exome capture and massively parallel DNA sequencing. Proc Natl Acad Sci USA 106:19096–19101

    Article  PubMed  CAS  Google Scholar 

  35. Maxmen A (2011) Exome sequencing deciphers rare diseases. Cell 144:635–637

    Article  PubMed  CAS  Google Scholar 

  36. St HC et al (2011) NT5E mutations and arterial calcifications. N Engl J Med 364:432–442

    Article  Google Scholar 

  37. Daly AK (2010) Genome-wide association studies in pharmacogenomics. Nat Rev Genet 11:241–246

    Article  PubMed  CAS  Google Scholar 

  38. Dewey FE et al (2011) Phased whole-genome genetic risk in a family quartet using a major allele reference sequence. PLoS Genet 7:e1002280

    Article  PubMed  CAS  Google Scholar 

  39. Trapnell C, Salzberg SL (2009) How to map billions of short reads onto genomes. Nat Biotechnol 27:455–457

    Article  PubMed  CAS  Google Scholar 

  40. Nielsen R et al (2011) Genotype and SNP calling from next-generation sequencing data. Nat Rev Genet 12:443–451

    Article  PubMed  CAS  Google Scholar 

  41. Hinchcliffe M, Webster P (2011) In silico analysis of the exome for gene discovery. Methods Mol Biol 760:109–128

    Article  PubMed  CAS  Google Scholar 

  42. Blaby-Haas CE, de Crecy-Lagard V (2011) Mining high-throughput experimental data to link gene and function. Trends Biotechnol 29:174–182

    Article  PubMed  CAS  Google Scholar 

  43. Nothnagel M et al (2011) Technology-specific error signatures in the 1000 Genomes Project data. Hum Genet 130:505–516

    Article  PubMed  Google Scholar 

  44. Al Badr W et al (2011) Exome capture and massively parallel sequencing identifies a novel HPSE2 mutation in a Saudi Arabian child with Ochoa (urofacial) syndrome. J Pediatr Urol 7:569–573

    Article  PubMed  Google Scholar 

  45. Alvarado DM et al (2011) Exome sequencing identifies an MYH3 mutation in a family with distal arthrogryposis type 1. J Bone Joint Surg Am 93:1045–1050

    Article  PubMed  Google Scholar 

  46. Barak T et al (2011) Recessive LAMC3 mutations cause malformations of occipital cortical development. Nat Genet 43:590–594

    Article  PubMed  CAS  Google Scholar 

  47. Becker J et al (2011) Exome sequencing identifies truncating mutations in human SERPINF1 in autosomal-recessive osteogenesis imperfecta. Am J Hum Genet 88:362–371

    Article  PubMed  CAS  Google Scholar 

  48. Bolze A et al (2010) Whole-exome-sequencing-based discovery of human FADD deficiency. Am J Hum Genet 87:873–881

    Article  PubMed  CAS  Google Scholar 

  49. Caliskan M et al (2011) Exome sequencing reveals a novel mutation for autosomal recessive non-syndromic mental retardation in the TECR gene on chromosome 19p13. Hum Mol Genet 20:1285–1289

    Article  PubMed  CAS  Google Scholar 

  50. de Greef JC et al (2011) Mutations in ZBTB24 are associated with immunodeficiency, centromeric instability, and facial anomalies syndrome type 2. Am J Hum Genet 88:796–804

    Article  PubMed  Google Scholar 

  51. Erlich Y et al (2011) Exome sequencing and disease-network analysis of a single family implicate a mutation in KIF1A in hereditary spastic paraparesis. Genome Res 21:658–664

    Article  PubMed  CAS  Google Scholar 

  52. Gilissen C et al (2010) Exome sequencing identifies WDR35 variants involved in Sensenbrenner syndrome. Am J Hum Genet 87:418–423

    Article  PubMed  CAS  Google Scholar 

  53. Glazov EA et al (2011) Whole-exome re-sequencing in a family quartet identifies POP1 mutations as the cause of a novel skeletal dysplasia. PLoS Genet 7:e1002027

    Article  PubMed  CAS  Google Scholar 

  54. Gotz A et al (2011) Exome sequencing identifies mitochondrial alanyl-tRNA synthetase mutations in infantile mitochondrial cardiomyopathy. Am J Hum Genet 88:635–642

    Article  PubMed  CAS  Google Scholar 

  55. Greif PA et al (2011) Somatic mutations in acute promyelocytic leukemia (APL) identified by exome sequencing. Leukemia 25:1519–1522

    Article  PubMed  CAS  Google Scholar 

  56. Johnson JO et al (2010) Exome sequencing reveals VCP mutations as a cause of familial ALS. Neuron 68:857–864

    Article  PubMed  CAS  Google Scholar 

  57. Li Y et al (2010) Resequencing of 200 human exomes identifies an excess of low-frequency non-synonymous coding variants. Nat Genet 42:969–972

    Article  PubMed  CAS  Google Scholar 

  58. Liu Y et al (2011) Confirmation by exome sequencing of the pathogenic role of NCSTN mutations in acne inversa (hidradenitis suppurativa). J Invest Dermatol 131:1570–1572

    Article  PubMed  CAS  Google Scholar 

  59. Mondal K et al (2011) Targeted sequencing of the human X chromosome exome. Genomics 98:260–265

    Article  PubMed  CAS  Google Scholar 

  60. Montenegro G et al (2011) Exome sequencing allows for rapid gene identification in a Charcot-Marie-Tooth family. Ann Neurol 69:464–470

    Article  PubMed  CAS  Google Scholar 

  61. Ng SB et al (2010) Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome. Nat Genet 42:790–793

    Article  PubMed  CAS  Google Scholar 

  62. O’Roak BJ et al (2011) Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations. Nat Genet 43:585–589

    Article  PubMed  Google Scholar 

  63. O’Sullivan J et al (2011) Whole-exome sequencing identifies FAM20A mutations as a cause of amelogenesis imperfecta and gingival hyperplasia syndrome. Am J Hum Genet 88:616–620

    Article  PubMed  Google Scholar 

  64. Ostergaard P et al (2011) Rapid identification of mutations in GJC2 in primary lymphoedema using whole exome sequencing combined with linkage analysis with delineation of the phenotype. J Med Genet 48:251–255

    Article  PubMed  CAS  Google Scholar 

  65. Puente XS et al (2011) Exome sequencing and functional analysis identifies BANF1 mutation as the cause of a hereditary progeroid syndrome. Am J Hum Genet 88:650–656

    Article  PubMed  CAS  Google Scholar 

  66. Rios J et al (2010) Identification by whole-genome resequencing of gene defect responsible for severe hypercholesterolemia. Hum Mol Genet 19:4313–4318

    Article  PubMed  CAS  Google Scholar 

  67. Saarinen S et al (2011) Exome sequencing reveals germline NPAT mutation as a candidate risk factor for Hodgkin lymphoma. Blood 118:493–498

    Article  PubMed  CAS  Google Scholar 

  68. Simpson MA et al (2011) Mutations in NOTCH2 cause Hajdu-Cheney syndrome, a disorder of severe and progressive bone loss. Am J Hum Genet 43:303–305

    CAS  Google Scholar 

  69. Snape K et al (2011) Mutations in CEP57 cause mosaic variegated aneuploidy syndrome. Am J Hum Genet 43:527–529

    CAS  Google Scholar 

  70. Szperl AM et al (2011) Exome sequencing in a family segregating for celiac disease. Clin Genet 80:138–147

    Article  PubMed  CAS  Google Scholar 

  71. Sundaram SK et al (2011) Exome sequencing of a pedigree with tourette syndrome or chronic tic disorder. Ann Neurol 69:901–904

    Article  PubMed  CAS  Google Scholar 

  72. Timmermann B et al (2010) Somatic mutation profiles of MSI and MSS colorectal cancer identified by whole exome next generation sequencing and bioinformatics analysis. PLoS One 5:e15661

    Article  PubMed  CAS  Google Scholar 

  73. Tsurusaki Y et al (2011) Exome sequencing of two patients in a family with atypical X-linked leukodystrophy. Clin Genet 80:161–166

    Article  PubMed  CAS  Google Scholar 

  74. Vissers LE et al (2010) A de novo paradigm for mental retardation. Am J Hum Genet 42:1109–1112

    CAS  Google Scholar 

  75. Vissers LE et al (2011) Chondrodysplasia and abnormal joint development associated with mutations in IMPAD1, encoding the Golgi-resident nucleotide phosphatase, gPAPP. Am J Hum Genet 88:608–615

    Article  PubMed  CAS  Google Scholar 

  76. Wei X et al (2011) Exome sequencing identifies GRIN2A as frequently mutated in melanoma. Nat Genet 43:442–446

    Article  PubMed  CAS  Google Scholar 

  77. Worthey EA et al (2011) Making a definitive diagnosis: successful clinical application of whole exome sequencing in a child with intractable inflammatory bowel disease. Genet Med 13:255–262

    Article  PubMed  Google Scholar 

  78. Yamaguchi T et al (2011) Exome resequencing combined with linkage analysis identifies novel PTH1R variants in primary failure of tooth eruption in Japanese. J Bone Miner Res 26(7):1655–1661

    Article  PubMed  CAS  Google Scholar 

  79. Zhou C et al (2011) Mutation in ribosomal protein L21 underlies hereditary hypotrichosis simplex. Hum Mutat 32:710–714

    Article  PubMed  CAS  Google Scholar 

  80. Zuchner S et al (2011) Whole-exome sequencing links a variant in DHDDS to retinitis pigmentosa. Am J Hum Genet 88:201–206

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported the Kimmel Cancer Center and the Computational Medicine Center at Thomas Jefferson University Jefferson Medical College.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Londin, E., Yadav, P., Surrey, S., Kricka, L.J., Fortina, P. (2013). Use of Linkage Analysis, Genome-Wide Association Studies, and Next-Generation Sequencing in the Identification of Disease-Causing Mutations. In: Innocenti, F., van Schaik, R. (eds) Pharmacogenomics. Methods in Molecular Biology, vol 1015. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-435-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-435-7_8

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-434-0

  • Online ISBN: 978-1-62703-435-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics