Skip to main content

The Growth and Delivery of Mesenchymal and Limbal Stem Cells Using Copolymer Polyamide 6/12 Nanofiber Scaffolds

  • Protocol
  • First Online:
Corneal Regenerative Medicine

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1014))

Abstract

The injured or otherwise damaged cornea is healed by limbal stem cells (LSC). If the limbus where LSC reside is also damaged or nonfunctional, the cornea cannot heal properly and this defect leads to impaired vision that can result in blindness. The only way to treat total LSC deficiency is by transplantation of limbal tissue or a transfer of LSC. Recently, mesenchymal stem cells (MSC) have been shown as another promising source of stem cells for corneal healing and regeneration. Here, we describe a protocol for the use of polyamide 6/12 nanofiber scaffolds for the growth of MSC and LSC, and for their transfer onto a mechanically damaged ocular surface in the experimental mouse model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ma Y, Xu Y, Xiao Y, Yang W, Zhang C, Song E et al (2006) Reconstruction of chemically burned rat cornea surface by bone marrow-derived human mesenchymal stem cells. Stem Cells 24:315–321

    Article  PubMed  Google Scholar 

  2. Oh JY, Kim MK, Shin MS, Lee HJ, Ko JH, Wee WR et al (2008) The anti-inflammatory and anti-angeogenic role of mesenchymal stem cells in corneal wound healing ­following chemical injury. Stem Cells 26:1047–1055

    Article  PubMed  CAS  Google Scholar 

  3. Zajicova A, Pokorna K, Lencova A, Krulova M, Svobodova E, Kubínova S et al (2010) Treatment of ocular surface injuries by limbal and mesenchymal stem cells growing on nanofiber scaffolds. Cell Transplant 19:1281–1290

    Article  PubMed  Google Scholar 

  4. Rama P, Bonini S, Lambiase A, Golisano O, Paterna P, De Luca M et al (2001) Autologous fibrin-cultured limbal stem cells permanently restore the corneal surface of patients with total limbal stem deficiency. Transplantation 72:1478–1485

    Article  PubMed  CAS  Google Scholar 

  5. Schwab IR, Johnson NT, Harkim DG (2006) Inherent risks associated with manufacture of bioengineered ocular surface tissue. Arch Ophthalmol 124:1734–1740

    Article  PubMed  Google Scholar 

  6. Tsai RJ, Li LM, Chen JK (2000) Reconstruction of damaged cornea by transplantation of autologous limbal epithelial cells. N Eng J Med 343:86–93

    Article  CAS  Google Scholar 

  7. Xie J, Willerth SM, Li X, Macewan MR, Rader A, Sakiyama-Elbert SE et al (2009) The differentiation of embryonic stem cells seeded on electrospun nanofibers into neural lineages. Biomaterials 30:354–362

    Article  PubMed  CAS  Google Scholar 

  8. Xin X, Hussain M, Mao JJ (2007) Continuing differentiation of human mesenchymal stem cells and induced chondrogenic and osteogenic lineages in electrospun PLGA nanofiber scaffold. Biomaterials 28:316–325

    Article  PubMed  CAS  Google Scholar 

  9. Shin YR, Chen CN, Tsai SW, Wang YJ, Lee OK (2006) Growth of mesenchymal stem cells on electrospun type I collagen nanofibers. Stem Cells 24:2391–2397

    Article  Google Scholar 

  10. Nur-E-Kamal A, Ahmed I, Kamal J, Schindler M, Meiners S (2006) Three-dimensional nanofibrillar surfaces promote self-renewal in mouse embryonic stem cells. Stem Cells 24:426–433

    Article  PubMed  Google Scholar 

  11. Holan V, Chudickova M, Trosan P, Svobodova E, Krulova M, Kubinova S et al (2011) Cyclosporine A-loaded and stem cell-seeded electrospun nanofibers for cell-based therapy and local immunosuppression. J Control Release 156:406–412

    Article  PubMed  CAS  Google Scholar 

  12. Jirsak O, Sanetrnik OF, LukasD, Kotek K, Martinova L, Chaloupek J (2005) U. S. patent No. WO 205024101, 2005

    Google Scholar 

  13. Dubsky M, Kubinova S, Sirc J, Voska L, Svobodova J, Zajicek R et al (2012) Nanofibers prepared by needleless electrospinning technology as scaffolds for wound healing. J Mater Sci Mater Med 23:931–941

    Article  PubMed  CAS  Google Scholar 

  14. Krulova M, Pokorna K, Lencova A, Zajicova A, Fric J, Filipec M et al (2008) A rapid separation of two distinct populations of corneal epithelial cells with limbal stem cell characteristics in the mouse. Invest Ophthalmol Vis Sci 49:3903–3908

    Article  PubMed  Google Scholar 

  15. Xing X, Wang Y, Li B (2008) Nanofibers drawing and nanodevices assembly in poly (trimethylene terephtalate). Opt Express 16:10815–10822

    Article  PubMed  CAS  Google Scholar 

  16. Niece KL, Hartgerink JD, Donners JM, Stupp SI (2003) Self-assembly combining two bioactive peptide-amphiphile molecules into nanofibers by electrostatic attraction. J Am Chem Soc 125:7146–7147

    Article  PubMed  CAS  Google Scholar 

  17. Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63:2223–2253

    Article  CAS  Google Scholar 

  18. Svobodova E, Krulova M, Zajicova A, Pokorna K, Prochazkova J, Trosan P et al (2012) The role of mouse mesenchymal stem cells in differentiation of naive T-cells into anti-inflammatory regulatory T-cell or proinflammatory helper T-cell 17 population. Stem Cells Dev 21:901–910

    Article  PubMed  CAS  Google Scholar 

  19. Trosan P, Svobodova E, Chudickova M, Krulova M, Zajicova A, Holan V (2012) The key role of insulin-like growth factor I in ­limbal stem cell differentiation and the corneal wound healing process. Stem Cells Dev 21:3341–3350

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants P304/11/0653 and P301/11/1568 from the Grant Agency of the Czech Republic, grant KAN200520804 from the Grant Agency of the Academy of Sciences, projects MSM0021620858 and SVV 265211 from the Ministry of Education of the Czech Republic, and project RVO 68378050 from the Academy of Sciences of the Czech Republic.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Holan, V., Javorkova, E., Trosan, P. (2013). The Growth and Delivery of Mesenchymal and Limbal Stem Cells Using Copolymer Polyamide 6/12 Nanofiber Scaffolds. In: Wright, B., Connon, C. (eds) Corneal Regenerative Medicine. Methods in Molecular Biology, vol 1014. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-432-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-432-6_13

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-431-9

  • Online ISBN: 978-1-62703-432-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics