Skip to main content

Genome-Wide Analysis of c-MYC-Regulated mRNAs and miRNAs, and c-MYC DNA Binding by Next-Generation Sequencing

  • Protocol
  • First Online:
The Myc Gene

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1012))

Abstract

The c-MYC oncogene is activated in ~50 % of all tumors, and its product, the c-MYC transcription factor, regulates numerous processes, which contribute to tumor initiation and progression. Therefore, the genome-wide characterization of c-MYC targets and their role in different tumor entities is a recurrent theme in cancer research. Recently, next-generation sequencing (NGS) has become a powerful tool to analyze mRNA and miRNA expression, as well as DNA binding of proteins in a genome-wide manner with an extremely high resolution and coverage. Since the c-MYC transcription factor regulates mRNA and miRNA expression by binding to specific DNA elements in the vicinity of promoters, NGS can be used to generate integrated representations of c-MYC-mediated regulations of gene transcription and chromatin modifications. Here, we provide protocols and examples of NGS-based analyses of c-MYC-regulated mRNA and miRNA expression, as well as of DNA binding by c-MYC. Furthermore, the validation of single c-MYC targets identified by NGS is described. Taken together, these approaches allow an accelerated and comprehensive analysis of c-MYC function in numerous cellular contexts which will further illuminate the role of this important oncogene.

HiSeq (1), Illumina (2), MiSeq (3), and TruSeq (4) are registered trademarks of Illumina Inc., San Diego, CA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dang CV (2012) MYC on the path to cancer. Cell 149:22–35

    Article  PubMed  CAS  Google Scholar 

  2. Meyer N, Penn LZ (2008) Reflecting on 25 years with MYC. Nat Rev Cancer 8:976–990

    Article  PubMed  CAS  Google Scholar 

  3. Thorley-Lawson DA, Allday MJ (2008) The curious case of the tumour virus: 50 years of Burkitt’s lymphoma. Nat Rev Microbiol 6:913–924

    Article  PubMed  CAS  Google Scholar 

  4. Nesbit CE, Tersak JM, Prochownik EV (1999) MYC oncogenes and human neoplastic disease. Oncogene 18:3004–3016

    Article  PubMed  CAS  Google Scholar 

  5. Marcu KB, Bossone SA, Patel AJ (1992) myc function and regulation. Annu Rev Biochem 61:809–860

    Article  PubMed  CAS  Google Scholar 

  6. Chappell SA, LeQuesne JP, Paulin FE, deSchoolmeester ML, Stoneley M, Soutar RL, Ralston SH, Helfrich MH, Willis AE (2000) A mutation in the c-myc-IRES leads to enhanced internal ribosome entry in multiple myeloma: a novel mechanism of oncogene de-regulation. Oncogene 19:4437–4440

    Article  PubMed  CAS  Google Scholar 

  7. Albert T, Urlbauer B, Kohlhuber F, Hammersen B, Eick D (1994) Ongoing mutations in the N-terminal domain of c-Myc affect transactivation in Burkitt’s lymphoma cell lines. Oncogene 9:759–763

    PubMed  CAS  Google Scholar 

  8. Salghetti SE, Kim SY, Tansey WP (1999) Destruction of Myc by ubiquitin-mediated proteolysis: cancer-associated and transforming mutations stabilize Myc. EMBO J 18:717–726

    Article  PubMed  CAS  Google Scholar 

  9. He TC, Sparks AB, Rago C, Hermeking H, Zawel L, da Costa LT, Morin PJ, Vogelstein B, Kinzler KW (1998) Identification of c-MYC as a target of the APC pathway. Science 281:1509–1512

    Article  PubMed  CAS  Google Scholar 

  10. van de Wetering M, Sancho E, Verweij C, de Lau W, Oving I, Hurlstone A, van der Horn K, Batlle E, Coudreuse D, Haramis AP, Tjon-Pon-Fong M, Moerer P, van den Born M, Soete G, Pals S, Eilers M, Medema R, Clevers H (2002) The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell 111:241–250

    Article  PubMed  Google Scholar 

  11. Sansom OJ, Reed KR, Hayes AJ, Ireland H, Brinkmann H, Newton IP, Batlle E, Simon-Assmann P, Clevers H, Nathke IS, Clarke AR, Winton DJ (2004) Loss of Apc in vivo immediately perturbs Wnt signaling, differentiation, and migration. Genes Dev 18:1385–1390

    Article  PubMed  CAS  Google Scholar 

  12. Murphy DJ, Junttila MR, Pouyet L, Karnezis A, Shchors K, Bui DA, Brown-Swigart L, Johnson L, Evan GI (2008) Distinct thresholds govern Myc’s biological output in vivo. Cancer Cell 14:447–457

    Article  PubMed  CAS  Google Scholar 

  13. Hermeking H, Eick D (1994) Mediation of c-Myc-induced apoptosis by p53. Science 265:2091–2093

    Article  PubMed  CAS  Google Scholar 

  14. Vafa O, Wade M, Kern S, Beeche M, Pandita TK, Hampton GM, Wahl GM (2002) c-Myc can induce DNA damage, increase reactive oxygen species, and mitigate p53 function: a mechanism for oncogene-induced genetic instability. Mol Cell 9:1031–1044

    Article  PubMed  CAS  Google Scholar 

  15. Dominguez-Sola D, Ying CY, Grandori C, Ruggiero L, Chen B, Li M, Galloway DA, Gu W, Gautier J, Dalla-Favera R (2007) Non-transcriptional control of DNA replication by c-Myc. Nature 448:445–451

    Article  PubMed  CAS  Google Scholar 

  16. Campaner S, Doni M, Verrecchia A, Faga G, Bianchi L, Amati B (2010) Myc, Cdk2 and cellular senescence: old players, new game. Cell Cycle 9:3655–3661

    Article  PubMed  CAS  Google Scholar 

  17. Menssen A, Hydbring P, Kapelle K, Vervoorts J, Diebold J, Luscher B, Larsson LG, Hermeking H (2012) The c-MYC oncoprotein, the NAMPT enzyme, the SIRT1-inhibitor DBC1, and the SIRT1 deacetylase form a positive feedback loop. Proc Natl Acad Sci USA 109:E187–E196

    Article  PubMed  CAS  Google Scholar 

  18. Eilers M, Eisenman RN (2008) Myc’s broad reach. Genes Dev 22:2755–2766

    Article  PubMed  CAS  Google Scholar 

  19. Jung P, Hermeking H (2009) The c-MYC-AP4-p21 cascade. Cell Cycle 8:982–989

    Article  PubMed  CAS  Google Scholar 

  20. Cowling VH, Cole MD (2006) Mechanism of transcriptional activation by the Myc oncoproteins. Semin Cancer Biol 16:242–252

    Article  PubMed  CAS  Google Scholar 

  21. Rahl PB, Lin CY, Seila AC, Flynn RA, McCuine S, Burge CB, Sharp PA, Young RA (2010) c-Myc regulates transcriptional pause release. Cell 141:432–445

    Article  PubMed  CAS  Google Scholar 

  22. Adhikary S, Eilers M (2005) Transcriptional regulation and transformation by Myc proteins. Nat Rev Mol Cell Biol 6:635–645

    Article  PubMed  CAS  Google Scholar 

  23. Ayer DE, Lawrence QA, Eisenman RN (1995) Mad-Max transcriptional repression is mediated by ternary complex formation with mammalian homologs of yeast repressor Sin3. Cell 80:767–776

    Article  PubMed  CAS  Google Scholar 

  24. Peukert K, Staller P, Schneider A, Carmichael G, Hanel F, Eilers M (1997) An alternative pathway for gene regulation by Myc. EMBO J 16:5672–5686

    Article  PubMed  CAS  Google Scholar 

  25. Herold S, Wanzel M, Beuger V, Frohme C, Beul D, Hillukkala T, Syvaoja J, Saluz HP, Haenel F, Eilers M (2002) Negative regulation of the mammalian UV response by Myc through association with Miz-1. Mol Cell 10:509–521

    Article  PubMed  CAS  Google Scholar 

  26. Mao DY, Watson JD, Yan PS, Barsyte-Lovejoy D, Khosravi F, Wong WW, Farnham PJ, Huang TH, Penn LZ (2003) Analysis of Myc bound loci identified by CpG island arrays shows that Max is essential for Myc-dependent repression. Curr Biol 13:882–886

    Article  PubMed  CAS  Google Scholar 

  27. Staller P, Peukert K, Kiermaier A, Seoane J, Lukas J, Karsunky H, Moroy T, Bartek J, Massague J, Hanel F, Eilers M (2001) Repression of p15INK4b expression by Myc through association with Miz-1. Nat Cell Biol 3:392–399

    Article  PubMed  CAS  Google Scholar 

  28. Smale ST, Baltimore D (1989) The “initiator” as a transcription control element. Cell 57:103–113

    Article  PubMed  CAS  Google Scholar 

  29. Patel JH, Loboda AP, Showe MK, Showe LC, McMahon SB (2004) Analysis of genomic targets reveals complex functions of MYC. Nat Rev Cancer 4:562–568

    Article  PubMed  CAS  Google Scholar 

  30. Wu CH, Sahoo D, Arvanitis C, Bradon N, Dill DL, Felsher DW (2008) Combined analysis of murine and human microarrays and ChIP analysis reveals genes associated with the ability of MYC to maintain tumorigenesis. PLoS Genet 4:e1000090

    Article  PubMed  Google Scholar 

  31. Zhou L, Picard D, Ra YS, Li M, Northcott PA, Hu Y, Stearns D, Hawkins C, Taylor MD, Rutka J, Der SD, Huang A (2010) Silencing of thrombospondin-1 is critical for myc-induced metastatic phenotypes in medulloblastoma. Cancer Res 70:8199–8210

    Article  PubMed  CAS  Google Scholar 

  32. Varlakhanova N, Cotterman R, Bradnam K, Korf I, Knoepfler PS (2011) Myc and Miz-1 have coordinate genomic functions including targeting Hox genes in human embryonic stem cells. Epigenetics Chromatin 4:20

    Article  PubMed  CAS  Google Scholar 

  33. Kidder BL, Yang J, Palmer S (2008) Stat3 and c-Myc genome-wide promoter occupancy in embryonic stem cells. PLoS One 3:e3932

    Article  PubMed  Google Scholar 

  34. Seitz V, Butzhammer P, Hirsch B, Hecht J, Gutgemann I, Ehlers A, Lenze D, Oker E, Sommerfeld A, von der Wall E, Konig C, Zinser C, Spang R, Hummel M (2011) Deep sequencing of MYC DNA-binding sites in Burkitt lymphoma. PLoS One 6:e26837

    Article  PubMed  CAS  Google Scholar 

  35. Perna D, Faga G, Verrecchia A, Gorski MM, Barozzi I, Narang V, Khng J, Lim KC, Sung WK, Sanges R, Stupka E, Oskarsson T, Trumpp A, Wei CL, Muller H, Amati B (2012) Genome-wide mapping of Myc binding and gene regulation in serum-stimulated fibroblasts. Oncogene 31:1695–1709

    Article  PubMed  CAS  Google Scholar 

  36. Ji H, Wu G, Zhan X, Nolan A, Koh C, De Marzo A, Doan HM, Fan J, Cheadle C, Fallahi M, Cleveland JL, Dang CV, Zeller KI (2011) Cell-type independent MYC target genes reveal a primordial signature involved in biomass accumulation. PLoS One 6:e26057

    Article  PubMed  CAS  Google Scholar 

  37. Li Z, Van Calcar S, Qu C, Cavenee WK, Zhang MQ, Ren B (2003) A global transcriptional regulatory role for c-Myc in Burkitt’s lymphoma cells. Proc Natl Acad Sci USA 100:8164–8169

    Article  PubMed  CAS  Google Scholar 

  38. Orian A, Grewal SS, Knoepfler PS, Edgar BA, Parkhurst SM, Eisenman RN (2005) Genomic binding and transcriptional regulation by the Drosophila Myc and Mnt transcription factors. Cold Spring Harb Symp Quant Biol 70:299–307

    Article  PubMed  CAS  Google Scholar 

  39. Zeller KI, Zhao X, Lee CW, Chiu KP, Yao F, Yustein JT, Ooi HS, Orlov YL, Shahab A, Yong HC, Fu Y, Weng Z, Kuznetsov VA, Sung WK, Ruan Y, Dang CV, Wei CL (2006) Global mapping of c-Myc binding sites and target gene networks in human B cells. Proc Natl Acad Sci USA 103:17834–17839

    Article  PubMed  CAS  Google Scholar 

  40. Varlakhanova NV, Knoepfler PS (2009) Acting locally and globally: Myc’s ever-expanding roles on chromatin. Cancer Res 69:7487–7490

    Article  PubMed  CAS  Google Scholar 

  41. Knoepfler PS (2007) Myc goes global: new tricks for an old oncogene. Cancer Res 67:5061–5063

    Article  PubMed  CAS  Google Scholar 

  42. Knoepfler PS, Zhang XY, Cheng PF, Gafken PR, McMahon SB, Eisenman RN (2006) Myc influences global chromatin structure. EMBO J 25:2723–2734

    Article  PubMed  CAS  Google Scholar 

  43. Zeller KI, Jegga AG, Aronow BJ, O’Donnell KA, Dang CV (2003) An integrated database of genes responsive to the Myc oncogenic transcription factor: identification of direct genomic targets. Genome Biol 4:R69

    Article  PubMed  Google Scholar 

  44. Lujambio A, Lowe SW (2012) The microcosmos of cancer. Nature 482:347–355

    Article  PubMed  CAS  Google Scholar 

  45. Bui TV, Mendell JT (2010) Myc: Maestro of MicroRNAs. Genes Cancer 1:568–575

    Article  PubMed  CAS  Google Scholar 

  46. Frenzel A, Loven J, Henriksson MA (2010) Targeting MYC-regulated miRNAs to combat cancer. Genes Cancer 1:660–667

    Article  PubMed  CAS  Google Scholar 

  47. Robertus JL, Kluiver J, Weggemans C, Harms G, Reijmers RM, Swart Y, Kok K, Rosati S, Schuuring E, van Imhoff G, Pals ST, Kluin P, van den Berg A (2010) MiRNA profiling in B non-Hodgkin lymphoma: a MYC-related miRNA profile characterizes Burkitt lymphoma. Br J Haematol 149:896–899

    Article  PubMed  CAS  Google Scholar 

  48. Kim JW, Mori S, Nevins JR (2010) Myc-induced microRNAs integrate Myc-mediated cell proliferation and cell fate. Cancer Res 70:4820–4828

    Article  PubMed  CAS  Google Scholar 

  49. Mu P, Han YC, Betel D, Yao E, Squatrito M, Ogrodowski P, de Stanchina E, D'Andrea A, Sander C, Ventura A (2009) Genetic dissection of the miR-17 92 cluster of microRNAs in Myc-induced B-cell lymphomas. Genes Dev 23:2806–2811

    Article  PubMed  CAS  Google Scholar 

  50. Lin CH, Jackson AL, Guo J, Linsley PS, Eisenman RN (2009) Myc-regulated microRNAs attenuate embryonic stem cell differentiation. EMBO J 28:3157–3170

    Article  PubMed  CAS  Google Scholar 

  51. Watson JD, Oster SK, Shago M, Khosravi F, Penn LZ (2002) Identifying genes regulated in a Myc-dependent manner. J Biol Chem 277:36921–36930

    Article  PubMed  CAS  Google Scholar 

  52. Eilers M, Picard D, Yamamoto KR, Bishop JM (1989) Chimaeras of myc oncoprotein and steroid receptors cause hormone-dependent transformation of cells. Nature 340:66–68

    Article  PubMed  CAS  Google Scholar 

  53. Jung P, Menssen A, Mayr D, Hermeking H (2008) AP4 encodes a c-MYC-inducible repressor of p21. Proc Natl Acad Sci USA 105:15046–15051

    Article  PubMed  CAS  Google Scholar 

  54. Mateyak MK, Obaya AJ, Adachi S, Sedivy JM (1997) Phenotypes of c-Myc-deficient rat fibroblasts isolated by targeted homologous recombination. Cell Growth Differ 8:1039–1048

    PubMed  CAS  Google Scholar 

  55. Han H, Nutiu R, Moffat J, Blencowe BJ (2011) SnapShot: high-throughput sequencing applications. Cell 146:1044, 1044 e1041–1042

    Article  PubMed  CAS  Google Scholar 

  56. Metzker ML (2010) Sequencing technologies—the next generation. Nat Rev Genet 11:31–46

    Article  PubMed  CAS  Google Scholar 

  57. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63

    Article  PubMed  CAS  Google Scholar 

  58. Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, Barbisin M, Xu NL, Mahuvakar VR, Andersen MR, Lao KQ, Livak KJ, Guegler KJ (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33:e179

    Article  PubMed  Google Scholar 

  59. Menssen A, Hermeking H (2002) Characterization of the c-MYC-regulated transcriptome by SAGE: identification and analysis of c-MYC target genes. Proc Natl Acad Sci USA 99:6274–6279

    Article  PubMed  CAS  Google Scholar 

  60. Alexandrow MG, Moses HL (1995) Transforming growth factor beta and cell cycle regulation. Cancer Res 55:1452–1457

    PubMed  CAS  Google Scholar 

  61. Menssen A, Epanchintsev A, Lodygin D, Rezaei N, Jung P, Verdoodt B, Diebold J, Hermeking H (2007) c-MYC delays prometaphase by direct transactivation of MAD2 and BubR1: identification of mechanisms underlying c-MYC-induced DNA damage and chromosomal instability. Cell Cycle 6:339–352

    Article  PubMed  CAS  Google Scholar 

  62. Park PJ (2009) ChIP-seq: advantages and challenges of a maturing technology. Nat Rev Genet 10:669–680

    Article  PubMed  CAS  Google Scholar 

  63. Fernandez PC, Frank SR, Wang L, Schroeder M, Liu S, Greene J, Cocito A, Amati B (2003) Genomic targets of the human c-Myc protein. Genes Dev 17:1115–1129

    Article  PubMed  CAS  Google Scholar 

  64. Martinato F, Cesaroni M, Amati B, Guccione E (2008) Analysis of Myc-induced histone modifications on target chromatin. PLoS One 3:e3650

    Article  PubMed  Google Scholar 

  65. Valouev A, Johnson DS, Sundquist A, Medina C, Anton E, Batzoglou S, Myers RM, Sidow A (2008) Genome-wide analysis of transcription factor binding sites based on ChIP-Seq data. Nat Methods 5:829–834

    Article  PubMed  CAS  Google Scholar 

  66. Zhu JY, Sun Y, Wang ZY (2012) Genome-wide identification of transcription factor-binding sites in plants using chromatin immunoprecipitation followed by microarray (ChIP-chip) or sequencing (ChIP-seq). Methods Mol Biol 876:173–188

    Article  PubMed  CAS  Google Scholar 

  67. Fejes AP, Robertson G, Bilenky M, Varhol R, Bainbridge M, Jones SJ (2008) FindPeaks 3.1: a tool for identifying areas of enrichment from massively parallel short-read sequencing technology. Bioinformatics 24:1729–1730

    Article  PubMed  CAS  Google Scholar 

  68. Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37:W202–W208

    Article  PubMed  CAS  Google Scholar 

  69. Cantacessi C, Jex AR, Hall RS, Young ND, Campbell BE, Joachim A, Nolan MJ, Abubucker S, Sternberg PW, Ranganathan S, Mitreva M, Gasser RB (2010) A practical, bioinformatic workflow system for large data sets generated by next-generation sequencing. Nucleic Acids Res 38:e171

    Article  PubMed  Google Scholar 

  70. Pepke S, Wold B, Mortazavi A (2009) Computation for ChIP-seq and RNA-seq studies. Nat Methods 6:S22–S32

    Article  PubMed  CAS  Google Scholar 

  71. Goecks J, Nekrutenko A, Taylor J (2010) Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol 11:R86

    Article  PubMed  Google Scholar 

  72. Pfaffl MW (2010) The ongoing evolution of qPCR. Methods 50:215–216

    Article  PubMed  CAS  Google Scholar 

  73. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    Article  PubMed  CAS  Google Scholar 

  74. Frank SR, Schroeder M, Fernandez P, Taubert S, Amati B (2001) Binding of c-Myc to chromatin mediates mitogen-induced acetylation of histone H4 and gene activation. Genes Dev 15:2069–2082

    Article  PubMed  CAS  Google Scholar 

  75. Reimers M, Carey VJ (2006) Bioconductor: an open source framework for bioinformatics and computational biology. Methods Enzymol 411:119–134

    Article  PubMed  CAS  Google Scholar 

  76. Ji H, Jiang H, Ma W, Johnson DS, Myers RM, Wong WH (2008) An integrated software system for analyzing ChIP-chip and ChIP-seq data. Nat Biotechnol 26:1293–1300

    Article  PubMed  CAS  Google Scholar 

  77. Kulakovskiy IV, Boeva VA, Favorov AV, Makeev VJ (2010) Deep and wide digging for binding motifs in ChIP-Seq data. Bioinformatics 26:2622–2623

    Article  PubMed  CAS  Google Scholar 

  78. Bailey TL (2002) Discovering novel sequence motifs with MEME. Curr Protoc Bioinformatics Chapter 2: Unit 2 4

    Google Scholar 

  79. Mackowiak SD (2011) Identification of novel and known miRNAs in deep-sequencing data with miRDeep2. Curr Protoc Bioinformatics Chapter 12:Unit 12 10

    Google Scholar 

  80. Hackenberg M, Rodriguez-Ezpeleta N, Aransay AM (2011) miRanalyzer: an update on the detection and analysis of microRNAs in high-throughput sequencing experiments. Nucleic Acids Res 39:W132–W138

    Article  PubMed  CAS  Google Scholar 

  81. Lagana A, Forte S, Giudice A, Arena MR, Puglisi PL, Giugno R, Pulvirenti A, Shasha D, Ferro A (2009) miRo: a miRNA knowledge base. Database (Oxford) 2009:bap008

    Google Scholar 

  82. Saeed AI, Bhagabati NK, Braisted JC, Liang W, Sharov V, Howe EA, Li J, Thiagarajan M, White JA, Quackenbush J (2006) TM4 microarray software suite. Methods Enzymol 411:134–193

    Article  PubMed  CAS  Google Scholar 

  83. Jackstadt R, Roh S, Neumann J, Jung P, Hoffmann R, Horst D, Berens C, Bornkamm GW, Kirchner T, Menssen A, Hermeking, H (2013) AP4 is a mediator of epithelial-mesenchymal transition and metastasis in colorectal cancer. J Exp Med 210 (7):1331–1350

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Work in the Hermeking lab is supported by the German–Israeli Science Foundation (GIF), the Rudolf-Bartling-Stiftung, the Deutsche Krebshilfe, the German Cancer Consortium (DKTK), and the Deutsche Forschungsgemeinschaft (DFG).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Note added in proof

Note added in proof

While this chapters was in press the authors published a completed analysis of mRNH expression and ONH building further illustrating the approaders drescribed here [83]

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Jackstadt, R., Menssen, A., Hermeking, H. (2013). Genome-Wide Analysis of c-MYC-Regulated mRNAs and miRNAs, and c-MYC DNA Binding by Next-Generation Sequencing. In: Soucek, L., Sodir, N. (eds) The Myc Gene. Methods in Molecular Biology, vol 1012. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-429-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-429-6_11

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-428-9

  • Online ISBN: 978-1-62703-429-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics