Skip to main content

Unraveling Chemokine and Chemokine Receptor Expression Patterns Using Genetically Engineered Mice

  • Protocol
  • First Online:
Chemokines

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1013))

Abstract

Over the past 25 years, genetically engineered mouse models have become an integral and invaluable research tool to develop our understanding of mammalian physiology and pathology. This unit describes methods for generating transgenic mice, focusing on reporter animals relevant to chemokine receptor and ligand expression. Specifically, we describe the use of bacterial artificial chromosome (BAC) engineering and embryonic stem cell manipulation to generate “knock in” and transgenic mice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Metchnikoff E (1887) Ueber den Kampf der Zellen gegen Erypselkokken, ein Beitrag zur Phagocytenlehre. Arch Pathol Anat Virchows’s Arch 107:209–249

    Article  Google Scholar 

  2. Karnovsky ML (1981) Metchnikoff in Messina: a century of studies on phagocytosis. N Engl J Med 304:1178–1180

    Article  PubMed  CAS  Google Scholar 

  3. Tauber AI (2003) Metchnikoff and the phagocytosis theory. Nat Rev Mol Cell Biol 4:897–901

    Article  PubMed  CAS  Google Scholar 

  4. Gordon S (2008) Elie Metchnikoff: father of natural immunity. Eur J Immunol 38:3257–3264

    Article  PubMed  CAS  Google Scholar 

  5. van Furth R, Cohn ZA (1968) The origin and kinetics of mononuclear phagocytes. J Exp Med 128:415–435

    Article  PubMed  Google Scholar 

  6. Yona S, Jung S (2010) Monocytes: subsets, origins, fates and functions. Curr Opin Hematol 17:53–59

    Article  PubMed  Google Scholar 

  7. Tompkins EH (1955) The monocyte. Ann N Y Acad Sci 59:732–745

    Article  PubMed  CAS  Google Scholar 

  8. van Furth R, Cohn ZA, Hirsch JG, Humphrey JH, Spector WG, Langevoort HL (1972) Mononuclear phagocytic system: new classification of macrophages, monocytes and of their cell line. Bull World Health Organ 47:651–658

    PubMed  Google Scholar 

  9. Grage-Griebenow E, Flad HD, Ernst M (2001) Heterogeneity of human peripheral blood monocyte subsets. J Leukoc Biol 69:11–20

    PubMed  CAS  Google Scholar 

  10. Bennett WE, Cohn ZA (1966) The isolation and selected properties of blood monocytes. J Exp Med 123:145–160

    Article  PubMed  CAS  Google Scholar 

  11. Figdor CG, Bont WS, Touw I, de Roos J, Roosnek EE, de Vries JE (1982) Isolation of functionally different human monocytes by counterflow centrifugation elutriation. Blood 60:46–53

    PubMed  CAS  Google Scholar 

  12. Yasaka T, Mantich NM, Boxer LA, Baehner RL (1981) Functions of human monocyte and lymphocyte subsets obtained by countercurrent centrifugal elutriation: differing functional capacities of human monocyte subsets. J Immunol 127:1515–1518

    PubMed  CAS  Google Scholar 

  13. Geissmann F, Jung S, Littman DR (2003) Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 19:71–82

    Article  PubMed  CAS  Google Scholar 

  14. Palframan RT, Jung S, Cheng G, Weninger W, Luo Y, Dorf M, Littman DR, Rollins BJ, Zweerink H, Rot A et al (2001) Inflammatory chemokine transport and presentation in HEV: a remote control mechanism for monocyte recruitment to lymph nodes in inflamed tissues. J Exp Med 194:1361–1373

    Article  PubMed  CAS  Google Scholar 

  15. Tacke F, Alvarez D, Kaplan TJ, Jakubzick C, Spanbroek R, Llodra J, Garin A, Liu J, Mack M, van Rooijen N et al (2007) Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques. J Clin Invest 117:185–194

    Article  PubMed  CAS  Google Scholar 

  16. Tsou CL, Peters W, Si Y, Slaymaker S, Aslanian AM, Weisberg SP, Mack M, Charo IF (2007) Critical roles for CCR2 and MCP-3 in monocyte mobilization from bone marrow and recruitment to inflammatory sites. J Clin Invest 117:902–909

    Article  PubMed  CAS  Google Scholar 

  17. Serbina NV, Salazar-Mather TP, Biron CA, Kuziel WA, Pamer EG (2003) TNF/iNOS-producing dendritic cells mediate innate immune defense against bacterial infection. Immunity 19:59–70

    Article  PubMed  CAS  Google Scholar 

  18. Serbina NV, Pamer EG (2006) Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2. Nat Immunol 7:311–317

    Article  PubMed  CAS  Google Scholar 

  19. Forster R, Wolf I, Kaiser E, Lipp M (1994) Selective expression of the murine homologue of the G-protein-coupled receptor BLR1 in B cell differentiation, B cell neoplasia and defined areas of the cerebellum. Cell Mol Biol (Noisy-le-grand) 40:381–387

    CAS  Google Scholar 

  20. Hopken UE, Droese J, Li JP, Joergensen J, Breitfeld D, Zerwes HG, Lipp M (2004) The chemokine receptor CCR7 controls lymph node-dependent cytotoxic T cell priming in alloimmune responses. Eur J Immunol 34:461–470

    Article  PubMed  Google Scholar 

  21. Jung S, Aliberti J, Graemmel P, Sunshine MJ, Kreutzberg GW, Sher A, Littman DR (2000) Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol Cell Biol 20:4106–4114

    Article  PubMed  CAS  Google Scholar 

  22. Fogg DK, Sibon C, Miled C, Jung S, Aucouturier P, Littman DR, Cumano A, Geissmann F (2006) A clonogenic bone marrow progenitor specific for macrophages and dendritic cells. Science 311:83–87

    Article  PubMed  CAS  Google Scholar 

  23. Liu K, Victora GD, Schwickert TA, Guermonprez P, Meredith MM, Yao K, Chu FF, Randolph GJ, Rudensky AY, Nussenzweig M (2009) In vivo analysis of dendritic cell development and homeostasis. Science 324:392–397

    Article  PubMed  CAS  Google Scholar 

  24. Niess JH, Brand S, Gu X, Landsman L, Jung S, McCormick BA, Vyas JM, Boes M, Ploegh HL, Fox JG et al (2005) CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science 307:254–258

    Article  PubMed  CAS  Google Scholar 

  25. Varol C, Vallon-Eberhard A, Elinav E, Aychek T, Shapira Y, Luche H, Fehling HJ, Hardt WD, Shakhar G, Jung S (2009) Intestinal lamina propria dendritic cell subsets have different origin and functions. Immunity 31:502–512

    Article  PubMed  CAS  Google Scholar 

  26. Bar-On L, Birnberg T, Lewis KL, Edelson BT, Bruder D, Hildner K, Buer J, Murphy KM, Reizis B, Jung S (2010) CX3CR1+ CD8α+ dendritic cells are a steady-state population related to plasmacytoid dendritic cells. Proc Natl Acad Sci USA 107:14745–14750

    Google Scholar 

  27. Cros J, Cagnard N, Woollard K, Patey N, Zhang SY, Senechal B, Puel A, Biswas SK, Moshous D, Picard C et al (2010) Human CD14dim monocytes patrol and sense nucleic acids and viruses via TLR7 and TLR8 receptors. Immunity 33:375–386

    Article  PubMed  CAS  Google Scholar 

  28. Auffray C, Fogg D, Garfa M, Elain G, Join-Lambert O, Kayal S, Sarnacki S, Cumano A, Lauvau G, Geissmann F (2007) Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science 317:666–670

    Article  PubMed  CAS  Google Scholar 

  29. Metzger D, Clifford J, Chiba H, Chambon P (1995) Conditional site-specific recombination in mammalian cells using a ligand-dependent chimeric Cre recombinase. Proc Natl Acad Sci USA 92:6991–6995

    Article  PubMed  CAS  Google Scholar 

  30. Bazan JF, Bacon KB, Hardiman G, Wang W, Soo K, Rossi D, Greaves DR, Zlotnik A, Schall TJ (1997) A new class of membrane-bound chemokine with a CX3C motif. Nature 385:640–644

    Article  PubMed  CAS  Google Scholar 

  31. Fong AM, Erickson HP, Zachariah JP, Poon S, Schamberg NJ, Imai T, Patel DD (2000) Ultrastructure and function of the fractalkine mucin domain in CX(3)C chemokine domain presentation. J Biol Chem 275:3781–3786

    Article  PubMed  CAS  Google Scholar 

  32. Hundhausen C, Misztela D, Berkhout TA, Broadway N, Saftig P, Reiss K, Hartmann D, Fahrenholz F, Postina R, Matthews V et al (2003) The disintegrin-like metalloproteinase ADAM10 is involved in constitutive cleavage of CX3CL1 (fractalkine) and regulates CX3CL1-mediated cell-cell adhesion. Blood 102:1186–1195

    Article  PubMed  CAS  Google Scholar 

  33. Tsou CL, Haskell CA, Charo IF (2001) Tumor necrosis factor-alpha-converting enzyme mediates the inducible cleavage of fractalkine. J Biol Chem 276:44622–44626

    Article  PubMed  CAS  Google Scholar 

  34. Kim KW, Vallon-Eberhard A, Zigmond E, Farache J, Shezen E, Shakhar G, Ludwig A, Lira SA, Jung S (2011) In vivo structure/function and expression analysis of the CX3C chemokine fractalkine. Blood 118:e156–e167

    Article  PubMed  CAS  Google Scholar 

  35. Gong S, Yang XW, Li C, Heintz N (2002) Highly efficient modification of bacterial artificial chromosomes (BACs) using novel shuttle vectors containing the R6Kgamma origin of replication. Genome Res 12:1992–1998

    Article  PubMed  CAS  Google Scholar 

  36. Sparwasser T, Gong S, Li JY, Eberl G (2004) General method for the modification of different BAC types and the rapid generation of BAC transgenic mice. Genesis 38:39–50

    Article  PubMed  CAS  Google Scholar 

  37. Wurst W, Kuhn R (2008) Gene knockout protocols second edition. Springer, New York

    Google Scholar 

  38. Joyner AL (2000) Gene targeting: a practical approach. Oxford University Press, Oxford, p 293, xviii

    Google Scholar 

  39. Yona S, Kim KW, Wolf Y, Mildner A, Varol D, Breker M, Strauss-Ayali D, Viukov S, Guilliams M, Misharin A, Hume DA, Perlman H, Malissen B, Zelzer E, Jung S (2013) Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 38:79–91

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Yona, S., Kim, KW., Haffner, R., Jung, S. (2013). Unraveling Chemokine and Chemokine Receptor Expression Patterns Using Genetically Engineered Mice. In: Cardona, A., Ubogu, E. (eds) Chemokines. Methods in Molecular Biology, vol 1013. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-426-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-426-5_8

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-425-8

  • Online ISBN: 978-1-62703-426-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics