Skip to main content

Characterizing Jasmonate Regulation of Male Fertility in Arabidopsis

  • Protocol
  • First Online:
Book cover Jasmonate Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1011))

Abstract

Coordination of events leading to fertilization of Arabidopsis flowers is tightly regulated, with an essential developmental cue from jasmonates (JAs). JAs coordinate stamen filament elongation, anther dehiscence, and pollen viability at stage 12 of flower development, the stage immediately prior to flower opening. Characterization of JA-biosynthesis and JA-response mutants of Arabidopsis, which usually have a complete male sterility phenotype, has contributed to the understanding of how JAs work in these reproductive processes. These mutants have also been fundamental to the identification of JA-dependent genes acting in male reproductive tissues that accomplish fertilization. The list of JA-dependent genes continues to grow, as does the necessity to characterize novel JA mutant and related transgenic plants. It is therefore instructive to place these genes and mutants in the framework of established JA responses. Here, we describe the phenotypic characterization of flowers that fail to respond to the JA signal. We also measure gene expression in male reproductive tissues of flowers with the aim of identifying their role in JA-dependent male fertility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McConn M, Browse J (1996) The critical requirement for linolenic acid is pollen development, not photosynthesis, in an Arabidopsis mutant. Plant Cell 8:403–416

    PubMed  CAS  Google Scholar 

  2. Feys BJF, Benedetti CE, Penfold CN, Turner JG (1994) Arabidopsis mutants selected for resistance to the phytotoxin coronatine are male sterile, insensitive to methyl jasmonate, resistant to a bacterial pathogen. Plant Cell 6:751–759

    PubMed  CAS  Google Scholar 

  3. Stintzi A, Browse J (2000) The Arabidopsis male-sterile mutant, opr3, lacks the 12-oxophytodienoic acid reductase required for jasmonate synthesis. Proc Natl Acad Sci USA 97:10625–10630

    Article  PubMed  CAS  Google Scholar 

  4. von Malek B, van der Graaff E, Schneitz K, Keller B (2002) The Arabidopsis male-sterile mutant dde2-2 is defective in the ALLENE OXIDE SYNTHASE gene encoding one of the key enzymes of the jasmonic acid biosynthesis pathway. Planta 216:187–192

    Article  Google Scholar 

  5. Ishiguro S, Kawai-Oda A, Ueda J, Nishida I, Okada K (2001) The DEFECTIVE IN ANTHER DEHISCENCE1 gene encodes a novel phospholipase A1 catalyzing the initial step of jasmonic acid biosynthesis, which synchronizes pollen maturation, anther dehiscence, flower opening in Arabidopsis. Plant Cell 13:2191–2209

    PubMed  CAS  Google Scholar 

  6. Xie D-X, Feys BF, James S, Nieto-Rostro M, Turner JG (1998) COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility. Science 280:1091–1094

    Article  PubMed  CAS  Google Scholar 

  7. Smyth DR, Bowman JL, Meyerowitz EM (1990) Early flower development in Arabidopsis. Plant Cell 2:755–767

    PubMed  CAS  Google Scholar 

  8. Mandaokar A, Thines B, Shin B, Lange BM, Choi G, Koo YJ, Yoo YJ, Choi YD, Choi G, Browse J (2006) Transcriptional regulators of stamen development in Arabidopsis identified by transcriptional profiling. Plant J 46:984–1008

    Article  PubMed  CAS  Google Scholar 

  9. Mandaokar A, Browse J (2009) MYB108 acts together with MYB24 to regulate jasmonate-mediated stamen maturation in Arabidopsis. Plant Physiol 149:851–862

    Article  PubMed  CAS  Google Scholar 

  10. Mandaokar A, Kumar VD, Amway M, Browse J (2003) Microarray and differential display identify genes involved in jasmonate-dependent anther development. Plant Mol Biol 52:775–786

    Article  PubMed  CAS  Google Scholar 

  11. Boavida LC, McCormick S (2007) Temperature as a determinant factor for increased and reproducible in vitro pollen germination in Arabidopsis thaliana. Plant J 52:570–582

    Article  PubMed  CAS  Google Scholar 

  12. Heslop-Harrison J, Heslop-Harrison Y (1970) Evaluation of pollen viability by enzymatically induced fluorescence; intracellular hydrolysis of fluorescein diacetate. Stain Technol 45:115–120

    PubMed  CAS  Google Scholar 

  13. Regan SM, Moffatt BA (1990) Cytochemical analysis of pollen development in wild-type Arabidopsis and a male-sterile mutant. Plant Cell 2:877–889

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Thines, B., Mandaokar, A., Browse, J. (2013). Characterizing Jasmonate Regulation of Male Fertility in Arabidopsis. In: Goossens, A., Pauwels, L. (eds) Jasmonate Signaling. Methods in Molecular Biology, vol 1011. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-414-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-414-2_2

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-413-5

  • Online ISBN: 978-1-62703-414-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics