Skip to main content

Mesenchymal Stem Cells for Trinucleotide Repeat Disorders

  • Protocol
  • First Online:
Trinucleotide Repeat Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1010))

Abstract

Mesenchymal stem cells/marrow stromal cells (MSCs) are ideally suited for cellular therapy due to their ease of isolation, manipulation, and strong safety profile in the clinic. They can be expanded from normal qualified human donors in large quantities and can be infused without tissue matching, since they shield themselves from the immune system. The ability to be transplanted without tissue matching has allowed large multicenter trials to be conducted with direct comparison of the same batches of MSCs, without adverse events or rejection reactions. MSCs are now approved as drugs in several countries outside of the USA. MSCs can be genetically modified to provide sustained and long-term delivery of growth factors at supraphysiological levels. Gene-modified MSCs are in clinical trials for the treatment of stroke and are under consideration for the treatment of neurodegenerative disorders such as Huntington’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The lots of sera must be screened for optimal MSC growth.

References

  1. Danielyan L, Schafer R, von Ameln-Mayerhofer A et al (2009) Intranasal delivery of cells to the brain. Eur J Cell Biol 88:315–324

    Article  PubMed  CAS  Google Scholar 

  2. Crigler L, Robey RC, Asawachaicharn A et al (2006) Human mesenchymal stem cell subpopulations express a variety of neuro-regulatory molecules and promote neuronal cell survival and neuritogenesis. Exp Neurol 198:54–64

    Article  PubMed  CAS  Google Scholar 

  3. Munoz JR, Stoutenger BR, Robinson AP et al (2005) Human stem/progenitor cells from bone marrow promote neurogenesis of endogenous neural stem cells in the hippocampus of mice. Proc Natl Acad Sci USA 102:18171–18176

    Article  PubMed  CAS  Google Scholar 

  4. Kassis I, Grigoriadis N, Gowda-Kurkalli B et al (2008) Neuroprotection and immunomodulation with mesenchymal stem cells in chronic experimental autoimmune encephalomyelitis. Arch Neurol 65:753–761

    Article  PubMed  Google Scholar 

  5. Canals JM, Pineda JR, Torres-Peraza JF et al (2004) Brain-derived neurotrophic factor regulates the onset and severity of motor dysfunction associated with enkephalinergic neuronal degeneration in Huntington’s disease. J Neurosci 24:7727–7739

    Article  PubMed  CAS  Google Scholar 

  6. Her LS, Goldstein LS (2008) Enhanced sensitivity of striatal neurons to axonal transport defects induced by mutant huntingtin. J Neurosci 28:13662–13672

    Article  PubMed  CAS  Google Scholar 

  7. Wu LL, Fan Y, Li S et al (2010) Huntingtin-associated protein-1 interacts with pro-brain-derived neurotrophic factor and mediates its transport and release. J Biol Chem 285:5614–5623

    Article  PubMed  CAS  Google Scholar 

  8. Zuccato C, Cattaneo E (2009) Brain-derived neurotrophic factor in neurodegenerative diseases. Nat Rev Neurol 5:311–322

    Article  PubMed  CAS  Google Scholar 

  9. Alberch J, Perez-Navarro E, Canals JM (2004) Neurotrophic factors in Huntington’s disease. Prog Brain Res 146:195–229

    PubMed  CAS  Google Scholar 

  10. Dey ND, Bombard MC, Roland BP et al (2010) Genetically engineered mesenchymal stem cells reduce behavioral deficits in the YAC 128 mouse model of Huntington’s disease. Behav Brain Res 214:193–200

    Article  PubMed  CAS  Google Scholar 

  11. Dao MA, Pepper KA, Nolta JA (1997) Long-term cytokine production from engineered primary human stromal cells influences human hematopoiesis in an in vivo xenograft model. Stem Cells 15:443–454

    Article  PubMed  CAS  Google Scholar 

  12. Meyerrose TE, Roberts M, Ohlemiller KK et al (2008) Lentiviral-transduced human mesenchymal stem cells persistently express therapeutic levels of enzyme in a xenotransplantation model of human disease. Stem Cells 26:1713–1722

    Article  PubMed  CAS  Google Scholar 

  13. Nolta JA, Dao MA, Wells S et al (1996) Transduction of pluripotent human hematopoietic stem cells demonstrated by clonal analysis after engraftment in immune-deficient mice. Proc Natl Acad Sci USA 93:2414–2419

    Article  PubMed  CAS  Google Scholar 

  14. Nolta JA, Kohn DB (1990) Comparison of the effects of growth factors on retroviral vector-mediated gene transfer and the proliferative status of human hematopoietic progenitor cells. Hum Gene Ther 1:257–268

    Article  PubMed  CAS  Google Scholar 

  15. Tsark EC, Dao MA, Wang X et al (2001) IL-7 enhances the responsiveness of human T cells that develop in the bone marrow of athymic mice. J Immunol 166:170–181

    PubMed  CAS  Google Scholar 

  16. Wang X, Ge S, McNamara G et al (2003) Albumin-expressing hepatocyte-like cells develop in the livers of immune-deficient mice that received transplants of highly purified human hematopoietic stem cells. Blood 101:4201–4208

    Article  PubMed  CAS  Google Scholar 

  17. Dao MA, Nolta JA (1997) Inclusion of IL-3 during retrovirally-mediated transduction on stromal support does not increase the extent of gene transfer into long-term engrafting human hematopoietic progenitors. Cytokines Cell Mol Ther 3:81–89

    PubMed  CAS  Google Scholar 

  18. Meyerrose TE, De Ugarte DA, Hofling AA et al (2007) In vivo distribution of human adipose-derived mesenchymal stem cells in novel xenotransplantation models. Stem Cells 25:220–227

    Article  PubMed  CAS  Google Scholar 

  19. Nolta JA, Hanley MB, Kohn DB (1994) Sustained human hematopoiesis in immunodeficient mice by cotransplantation of marrow stroma expressing human interleukin-3: analysis of gene transduction of long-lived progenitors. Blood 83:3041–3051

    PubMed  CAS  Google Scholar 

  20. Meyerrose T, Rosova I, Dao M et al (2006) Establishment and tranduction of primary human stroma/mesenchymal stem cell monolayers, vol Chapter 2. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  21. Bauer G, Dao MA, Case SS et al (2008) In vivo biosafety model to assess the risk of adverse events from retroviral and lentiviral vectors. Mol Ther 16:1308–1315

    Article  PubMed  CAS  Google Scholar 

  22. Devine SM, Flomenberg N, Vesole DH et al (2004) Rapid mobilization of CD34+ cells following administration of the CXCR4 antagonist AMD3100 to patients with multiple myeloma and non-Hodgkin’s lymphoma. J Clin Oncol 22:1095–1102

    Article  PubMed  CAS  Google Scholar 

  23. Fuse T, Tanikawa M, Nakanishi M et al (2000) p27Kip1 expression by contact inhibition as a prognostic index of human glioma. J Neurochem 74:1393–1399

    Article  PubMed  CAS  Google Scholar 

  24. Kato A, Takahashi H, Takahashi Y et al (1997) Contact inhibition-induced inactivation of the cyclin d-dependent kinase in rat fibroblast cell line, 3Y1. Leukemia 11(Suppl 3):361–362

    PubMed  Google Scholar 

  25. Polyak K, Kato JY, Solomon MJ et al (1994) p27Kip1, a cyclin-Cdk inhibitor, links transforming growth factor-beta and contact inhibition to cell cycle arrest. Genes Dev 8:9–22

    Article  PubMed  CAS  Google Scholar 

  26. Miller DG, Adam MA, Miller AD (1990) Gene transfer by retrovirus vectors occurs only in cells that are actively replicating at the time of infection. Mol Cell Biol 10:4239–4242

    PubMed  CAS  Google Scholar 

  27. Sutton RE, Reitsma MJ, Uchida N et al (1999) Transduction of human progenitor hematopoietic stem cells by human immunodeficiency virus type 1-based vectors is cell cycle dependent. J Virol 73:3649–3660

    PubMed  CAS  Google Scholar 

  28. Dao M, Nolta J (1999) Molecular control of cell cycle progression in primary human hematopoietic stem cells: methods to increase levels of retroviral-mediated transduction. Leukemia 13:1473–1480

    Article  PubMed  CAS  Google Scholar 

  29. Dao MA, Hwa J, Nolta JA (2002) Molecular mechanism of transforming growth factor beta-mediated cell-cycle modulation in primary human CD34(+) progenitors. Blood 99:499–506

    Article  PubMed  CAS  Google Scholar 

  30. Dao MA, Taylor N, Nolta JA (1998) Reduction in levels of the cyclin-dependent kinase inhibitor p27(kip-1) coupled with transforming growth factor beta neutralization induces cell-cycle entry and increases retroviral transduction of primitive human hematopoietic cells. Proc Natl Acad Sci USA 95:13006–13011

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer New York

About this protocol

Cite this protocol

Annett, G., Bauer, G., Nolta, J.A. (2013). Mesenchymal Stem Cells for Trinucleotide Repeat Disorders. In: Kohwi, Y., McMurray, C. (eds) Trinucleotide Repeat Protocols. Methods in Molecular Biology, vol 1010. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-411-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-411-1_6

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-410-4

  • Online ISBN: 978-1-62703-411-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics