Skip to main content

Study of Oxidative Damage and Antioxidant Systems in Two Huntington’s Disease Rodent Models

  • Protocol
  • First Online:
Trinucleotide Repeat Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1010))

Abstract

Huntington’s disease (HD) is a hereditary neurodegenerative disorder, characterized by motor, psychiatric, and cognitive symptoms. The genetic defect responsible for the onset of the disease, expansion of CAG repeats in exon 1 of the gene that codes for huntingtin, has been unambiguously identified. The mechanisms by which the mutation causes the disease are not completely understood yet. However, defects in the energy metabolism of affected cells, which may cause oxidative damage, have been proposed as underlying molecular mechanisms that participate in the etiology of the disease. In this chapter, we describe biochemical methods that allow us to determine striatal oxidative damage in transgenic mice and in the quinolinic acid-induced excitotoxicity model in rat, and establish the status of protective cellular systems. The excitotoxic model is acute, easier and faster to perform than the transgenic model, and can within a short period provide valuable data to try new therapeutic strategies. The methods described in this chapter permit us to link the kynurenine pathway with the cascade of toxic and harmful reactions that cause the damage observed in HD. We consider that determining the mechanisms inducing oxidative damage in two different models of HD will allow the testing of drugs or other therapeutic strategies with antioxidant activities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Browne SE, Bowling AC, MacGarvey U et al (1997) Oxidative damage and metabolic dysfunction in Huntington’s disease: selective vulnerability of the basal ganglia. Ann Neurol 41:646–653

    Article  PubMed  CAS  Google Scholar 

  2. Segovia J, Arregui L (2007) Mechanisms of neuronal death associated to Huntington’s disease. In: Massieu L, Arias C, Moran J (eds) The neurochemistry of neuronal death. Research Signpost, Trivandrum, p 197

    Google Scholar 

  3. Polidori MC, Mecocci P, Browne SE et al (1999) Oxidative damage to mitochondrial DNA in Huntington’s disease parietal cortex. Neurosci Lett 272:53–56

    Article  PubMed  CAS  Google Scholar 

  4. Arregui L, Segovia J (2004) Molecular strategies for the treatment of Huntington’s disease. Curr Pharmacogenomics 2:299–311

    Article  CAS  Google Scholar 

  5. Arregui L, Segovia J (2009) Transgenic murine models for Huntington’s disease. In: Rocha-Arrieta LL, Granados-Soto V (eds) Models of neuropharmacology. Transworld Research Network, Trivandrum, p 35

    Google Scholar 

  6. Ross CA, Tabrizi SJ (2011) Huntington’s disease: from molecular pathogenesis to clinical treatment. Lancet Neurol 10:83–98

    Article  PubMed  CAS  Google Scholar 

  7. Beal MF, Kowall NW, Ellison DW et al (1986) Replication of the neurochemical characteristics of Huntington’s disease by quinolinic acid. Nature 321:168–171

    Article  PubMed  CAS  Google Scholar 

  8. Stone TW (1999) Neuropharmacology of quinolinic and kynurenic acids. Pharmacol Rev 45:309–379

    Google Scholar 

  9. Perez-Severiano F, Escalante B, Rios C (1998) Nitric oxide synthase inhibition prevents acute quinolinate-induced striatal neurotoxicity. Neurochem Res 23:1297–1302

    Article  PubMed  CAS  Google Scholar 

  10. Schwarcz R, Guidetti P, Sathyasaikumar KV et al (2010) Of mice, rats and men: revisiting the quinolinic acid hypothesis of Huntington’s disease. Prog Neurobiol 90:230–245

    Article  PubMed  CAS  Google Scholar 

  11. Sies H (1999) Glutathione and its role in cellular function. Free Radic Biol Med 27:916–921

    Article  PubMed  CAS  Google Scholar 

  12. Mangiarini L, Sathasivam K, Seller M et al (1996) Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87:493–506

    Article  PubMed  CAS  Google Scholar 

  13. Segovia J (2002) Transgenic model for the study of oxidative damage in Huntington’s disease. Methods Enzymol 353:365–373

    Article  PubMed  CAS  Google Scholar 

  14. Pérez-Severiano F, Ríos C, Segovia J (2000) Striatal oxidative damage parallels the expression of a neurological phenotype in mice transgenic for the mutation of Huntington’s disease. Brain Res 862:234–237

    Article  PubMed  Google Scholar 

  15. Paxinos G, Watson G (1984) The rat brain in stereotaxic coordinates. Academic, Sydney

    Google Scholar 

  16. Gutteridge JM, Halliwell B (1990) The measurement and mechanism of lipid peroxidation in biological systems. Trends Biochem Sci 15:129–135

    Article  PubMed  CAS  Google Scholar 

  17. Chan PH, Yurko M, Fishman RA (1982) Phospholipid degradation and cellular edema induced by free radicals in brain cortical slices. J Neurochem 38:525–531

    Article  PubMed  CAS  Google Scholar 

  18. Lowry OH, Rosebrougth NJ, Farr AL et al (1951) Protein measurement with the folin-phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  19. Perez-Severiano F, Santamaria A, Pedraza-Chaverri J et al (2004) Increased formation of reactive oxygen species, but no changes in glutathione peroxidase activity, in striata of mice transgenic for the Huntington’s disease mutation. Neurochem Res 29:729–733

    Article  PubMed  CAS  Google Scholar 

  20. Bindokas VP, Jordán J, Lee CC et al (1996) Superoxide production in rat hippocampal neurons: selective imaging with hydroethidine. J Neurosci 16:1324–1336

    PubMed  CAS  Google Scholar 

  21. Zhao H, Joseph J, Fales HM et al (2005) Detection and characterization of the product of hydroethidine and intracellular superoxide by HPLC and limitations of fluorescence. Proc Natl Acad Sci USA 102:5727–5732

    Article  PubMed  CAS  Google Scholar 

  22. Arellano-Mendoza MG, Castillo-Henkel C, Medina-Santillan R et al (2008) Kidney damage after renal ablation is worsened in endothelial nitric oxide synthase (−/−) mice and improved by combined administration of L-arginine and antioxidants. Nephrology (Carlton) 13:218–227

    Article  Google Scholar 

  23. Schuman EM, Madison DV (1994) Nitric oxide and synaptic function. Annu Rev Neurosci 17:153–183

    Article  PubMed  CAS  Google Scholar 

  24. Bredt DS, Snyder SH (1990) Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme. Proc Natl Acad Sci USA 87:682–685

    Article  PubMed  CAS  Google Scholar 

  25. Pérez-Severiano F, Escalante B, Vergara P et al (2002) Age-dependent changes in nitric oxide synthase activity and protein expression in striata of mice transgenic for the Huntington’s Disease mutation. Brain Res 862:234–237

    Article  Google Scholar 

  26. Díaz-Barriga F, Hernández JM, Carrizales L et al (1989) Interactions of cadmium with actin microfilaments. Toxicol In Vitro 3:277–284

    Article  PubMed  Google Scholar 

  27. Oberley LW, Spitz DR (1984) Assay of superoxide dismutase activity in tumor tissue. Methods Enzymol 105:457–464

    Article  PubMed  CAS  Google Scholar 

  28. Iqbal J, Whitney P (1991) Use of cyanide and diethyldithiocarbamate in the assay of superoxide dismutases. Free Radic Biol Med 10:69–77

    Article  PubMed  CAS  Google Scholar 

  29. Santamaría A, Pérez-Severiano F, Rodríguez-Martínez E et al (2001) Comparative analysis of superoxide dismutase activity between acute pharmacological models and a transgenic mouse model of Huntington’s disease. Neurochem Res 26:419–424

    Article  PubMed  Google Scholar 

  30. Bharath S, Hsu M, Kaur D et al (2002) Glutathione and Parkinson’s disease. Biochem Pharmacol 64:1037–1048

    Article  PubMed  CAS  Google Scholar 

  31. Hissing PJ, Hilf R (1976) A flourometric method for the determination of oxidized and reduced glutathione in tissues. Anal Biochem 74:214–226

    Article  Google Scholar 

  32. Triggs WP, Willmore LJ (1984) In vivo lipid peroxidation in rat brain following intracortical Fe++ injection. J Neurochem 42:976–979

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We want to thank Paula Vergara, Hilda Vargas and Perla D. Maldonado for their assistance and expertise in the development and use of several of the techniques described in this chapter. This work was partially supported by CONACyT grants 127357 (J.S.) and 61327 (F.P.S.).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer New York

About this protocol

Cite this protocol

Pérez-Severiano, F., Montes, S., Gerónimo-Olvera, C., Segovia, J. (2013). Study of Oxidative Damage and Antioxidant Systems in Two Huntington’s Disease Rodent Models. In: Kohwi, Y., McMurray, C. (eds) Trinucleotide Repeat Protocols. Methods in Molecular Biology, vol 1010. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-411-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-411-1_12

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-410-4

  • Online ISBN: 978-1-62703-411-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics