Skip to main content

Distinguishing Phosphatidic Acid Pools from De Novo Synthesis, PLD, and DGK

  • Protocol
  • First Online:
Plant Lipid Signaling Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1009))

Abstract

In plants, phosphatidic acid (PA) functions as a metabolic precursor in the biosynthesis of glycerolipids, but it also acts as a key signaling lipid in the response to environmental stress conditions (Testerink and Munnik, J Exp Bot 62:2349–2361, 2011). In vivo 32P-radiolabeling assays have shown the level of PA to increase within seconds/minutes of exposure to a stimulus. This response can be due to the activity of diacylglycerol kinase (DGK) and/or phospholipase D (PLD). A method is described to investigate which of the pathways is responsible for PA accumulation under a particular stress condition.

First, a differential 32P-radiolabeling protocol is used to discriminate 32P-PA pools that are rapidly labeled versus those requiring long prelabeling times, reflecting DGK and PLD activities, respectively. Second, to specifically monitor the contribution of PLD, a transphosphatidylation assay is applied, which makes use of the artificial lipid phosphatidylbutanol as an in vivo marker of PLD activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Testerink C, Munnik T (2011) Molecular, cellular, and physiological responses to phosphatidic acid formation in plants. J Exp Bot 62:2349–2361

    Article  CAS  PubMed  Google Scholar 

  2. Arisz SA, Testerink C, Munnik T (2009) Plant PA signaling via diacylglycerol kinase. Biochim Biophys Acta 1791:869–875

    Article  CAS  PubMed  Google Scholar 

  3. Munnik T, Van Himbergen JAJ, Ter Riet B, Braun F-J, Irvine RF, Van den Ende H, Musgrave A (1998) Detailed analysis of the turnover of polyphosphoinositides and phosphatidic acid upon activation of phospholipases C and D in Chlamydomonas cells treated with non-permeabilizing concentrations of mastoparan. Planta 207:133–145

    Article  CAS  Google Scholar 

  4. Arisz SA, Munnik T. The salt-stress induced lysophosphatidic-acid response in Chlamydomonas is produced via phospholipase A2 hydrolysis of diacylglycerol kinase-generated phosphatidic acid. J Lipid Res 52:2012–2020

    Google Scholar 

  5. Munnik T, Arisz SA, De Vrije T, Musgrave A (1995) G protein activation stimulates phospholipase D signaling in plants. Plant Cell 7:2197–2210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Munnik T, Zarza X (2013) Analyzing plant signaling phospholipids through 32Pi-labeling and TLC. Methods Mol Biol. 1009:3–15

    Article  CAS  PubMed  Google Scholar 

  7. Munnik T, Laxalt AM (2013) Phospholipase D activity in vivo. Methods Mol Biol. 1009:219–231

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Arisz, S.A., Munnik, T. (2013). Distinguishing Phosphatidic Acid Pools from De Novo Synthesis, PLD, and DGK. In: Munnik, T., Heilmann, I. (eds) Plant Lipid Signaling Protocols. Methods in Molecular Biology, vol 1009. Humana, Totowa, NJ. https://doi.org/10.1007/978-1-62703-401-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-401-2_6

  • Published:

  • Publisher Name: Humana, Totowa, NJ

  • Print ISBN: 978-1-62703-400-5

  • Online ISBN: 978-1-62703-401-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics