Skip to main content

Phosphatidylinositol 4-Kinase and Phosphatidylinositol 4-Phosphate 5-Kinase Assays

  • Protocol
  • First Online:
Plant Lipid Signaling Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1009))

Abstract

Inositol lipid kinases are perhaps the easiest and most straightforward enzymes in the phosphoinositide pathway to analyze. In addition to monitoring lipid kinase-specific activity, lipid kinase assays can be used to quantify the inositol lipids present in isolated membranes (Jones et al., Methods Mol Biol 462:75–88, 2009). The lipid kinase assays are based on the fact that the more negatively charged phosphorylated lipid products are readily separated from their lipid substrates by thin layer chromatography. We have summarized our current protocols and identified important considerations for working with inositol lipids including different methods for substrate delivery when using recombinant proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jones DR, Bultsma Y, Keune WJ, Divecha N (2009) Methods for the determination of the mass of nuclear PtdIns4P, PtdIns5P, and PtdIns(4,5)P2. Methods Mol Biol 462:75–88

    CAS  PubMed  Google Scholar 

  2. Sommarin M, Sandelius AS (1988) Phosphatidylinositol and phosphatidylinositolphosphate kinases in plant plasma membranes. Biochim Biophys Acta 958:268–278

    Article  CAS  Google Scholar 

  3. Sandelius AS, Sommarin M (1986) Phosphorylation of phosphatidylinositols in isolated plant membranes. FEBS Lett 201:282–286

    Article  CAS  Google Scholar 

  4. Dove SK, Lloyd CW, Drøbak BK (1994) Identification of a phosphatidylinositol 3-hydroxy kinase in plant cells: association with the cytoskeleton. Biochem J 303:347–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yang W, Boss WF (1994) Regulation of the plasma membrane type III phosphatidylinositol 4- kinase by positively charged compounds. Arch Biochem Biophys 313:112–119

    Article  CAS  PubMed  Google Scholar 

  6. Westergren T, Ekblad L, Jergil B, Sommarin M (1999) Phosphatidylinositol 4-kinase associated with spinach plasma membranes. Isolation and characterization of two distinct forms. Plant Physiol 121:507–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Stevenson-Paulik J, Love J, Boss WF (2003) Differential regulation of two Arabidopsis type III phosphatidylinositol 4-kinase isoforms. A regulatory role for the pleckstrin homology domain. Plant Physiol 132:1053–1064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mueller-Roeber B, Pical C (2002) Inositol phospholipid metabolism in Arabidopsis. Characterized and putative isoforms of inositol phospholipid kinase and phosphoinositide-specific phospholipase C. Plant Physiol 130:22–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Xue HW, Pical C, Brearley C, Elge S, Muller-Rober B (1999) A plant 126-kDa phosphatidylinositol 4-kinase with a novel repeat structure. Cloning and functional expression in baculovirus-infected insect cells. J Biol Chem 274:5738–5745

    Article  CAS  PubMed  Google Scholar 

  10. Westergren T, Dove SK, Sommarin M, Pical C (2001) AtPIP5K1, an Arabidopsis thaliana phosphatidylinositol phosphate kinase, synthesizes PtdIns(3,4)P2 and PtdIns(4,5)P2 in vitro and is inhibited by phosphorylation. Biochem J 359:583–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Perera IY, Davis AJ, Galanopoulou D, Im YJ, Boss WF (2005) Characterization and comparative analysis of Arabidopsis phosphatidylinositol phosphate 5-kinase 10 reveals differences in Arabidopsis and human phosphatidylinositol phosphate kinases. FEBS Lett 579:3427–3432

    Article  CAS  PubMed  Google Scholar 

  12. Stenzel I, Ischebeck T, Konig S, Holubowska A, Sporysz M, Hause B, Heilmann I (2008) The type B phosphatidylinositol-4-phosphate 5-kinase 3 is essential for root hair formation in Arabidopsis thaliana. Plant Cell 20:124–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Saavedra L, Balbi V, Dove SK, Hiwatashi Y, Mikami K, Sommarin M (2009) Characterization of phosphatidylinositol phosphate kinases from the moss Physcomitrella patens: PpPIPK1 and PpPIPK2. Plant Cell Physiol 50:595–609

    Article  CAS  PubMed  Google Scholar 

  14. Galvão RM, Kota U, Soderblom EJ, Goshe MB, Boss WF (2008) Characterization of a new family of protein kinases from Arabidopsis containing phosphoinositide 3/4-kinase and ubiquitin-like domains. Biochem J 409:117–127

    Article  PubMed  Google Scholar 

  15. Yang W, Burkhart W, Cavallius J, Merrick WC, Boss WF (1993) Purification and characterization of a phosphatidylinositol 4-kinase activator in carrot cells. J Biol Chem 268:392–398

    Article  CAS  PubMed  Google Scholar 

  16. Kost B, Lemichez E, Spielhofer P, Hong Y, Tolias K, Carpenter C, Chua NH (1999) Rac homologues and compartmentalized phosphatidylinositol 4, 5- bisphosphate act in a common pathway to regulate polar pollen tube growth. J Cell Biol 145:317–330

    Article  CAS  PubMed Central  Google Scholar 

  17. Preuss ML, Schmitz AJ, Thole JM, Bonner HKS, Otegui MS, Nielsen E (2006) A role for the RabA4b effector protein, PI-4Kβ1, in polarized expansion of root hair cells in Arabidopsis. J Cell Biol 172:991–998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhao Y, Yan A, Feijo JA, Furutani M, Takenawa T, Hwang I, Fu Y, Yang Z (2010) Phosphoinositides regulate clathrin-dependent endocytosis at the tip of pollen tubes in Arabidopsis and tobacco. Plant Cell 22:4031–4044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hendrix W, Assefa H, Boss WF (1989) The polyphosphoinositides, phosphatidylinositol monophosphate and phosphatidylinositol bisphosphate are present in nuclei isolated from carrot protoplasts. Protoplasma 151:62–72

    Article  Google Scholar 

  20. Stevenson JM, Perera IY, Boss WF (1998) A phosphatidylinositol 4-kinase pleckstrin homology domain that binds phosphatidylinositol 4-monophosphate. J Biol Chem 273:22761–22767

    Article  CAS  PubMed  Google Scholar 

  21. Im YJ, Davis AJ, Perera IY, Johannes E, Allen NS, Boss WF (2007) The N-terminal membrane occupation and recognition nexus domain of Arabidopsis phosphatidylinositol phosphate kinase 1 regulates enzyme activity. J Biol Chem 282:5443–5452

    Article  CAS  PubMed  Google Scholar 

  22. Walsh JP, Caldwell KK, Majerus PW (1991) Formation of phosphatidylinositol 3-phosphate by isomerization from phosphatidylinositol 4-phosphate. Proc Natl Acad Sci USA 88:9184–9187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hama H, Torebinejad J, Prestwich G, DeWald D (2004) Measurement and immunofluo­rescence of cellular phosphoinositides. In: Dickson R (ed) Methods in molecular biology: signal transduction protocols. Humana, Clifton, pp 243–258

    Chapter  Google Scholar 

  24. Davis AJ, Perera IY, Boss WF (2004) Cyclodextrins enhance recombinant phosphatidylinositol phosphate kinase activity. J Lipid Res 45:1783–1789

    Article  CAS  PubMed  Google Scholar 

  25. Heilmann I, Perera IY, Gross W, Boss WF (1999) Changes in phosphoinositide metabolism with days in culture affect signal transduction pathways in Galdieria sulphuraria. Plant Physiol 229:1331–1339

    Article  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the funding from National Science Foundation (# MCB0718452), US Department of Agriculture (IYP #1009-65114-06019), graduate training fellowships for C.D. from the NIH/NCSU Molecular Biotechnology Training Program and the Initiative for Future Agriculture and Food Systems Grant No. 2001-52101-11507 from the USDA Cooperative State Research, Education, and Extension Service and support from the North Carolina Agricultural Research Service (W.F.B.).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Im, Y.J., Brglez, I., Dieck, C., Perera, I.Y., Boss, W.F. (2013). Phosphatidylinositol 4-Kinase and Phosphatidylinositol 4-Phosphate 5-Kinase Assays. In: Munnik, T., Heilmann, I. (eds) Plant Lipid Signaling Protocols. Methods in Molecular Biology, vol 1009. Humana, Totowa, NJ. https://doi.org/10.1007/978-1-62703-401-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-401-2_15

  • Published:

  • Publisher Name: Humana, Totowa, NJ

  • Print ISBN: 978-1-62703-400-5

  • Online ISBN: 978-1-62703-401-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics