Skip to main content

Protein Sample Characterization

  • Protocol
  • First Online:
Protein-Ligand Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1008))

Abstract

Most biophysical experiments require protein samples of high quality and accurately determined concentration. This chapter attempts to compile basic information on the most common methods to assess the purity, dispersity, and stability of protein samples. It also reminds of methods to measure protein concentration and of their limits. The idea is to make aware and remind of the range of methods available and of commonly overlooked pitfalls. The aim is to enable experimenters to fully characterize their preparations of soluble or membrane proteins and gain reliable and reproducible results from their experimental work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  2. Philo JS (2006) Is any measurement method optimal for all aggregate sizes and types? AAPS J 8:E564–E571

    Article  PubMed  CAS  Google Scholar 

  3. Harding SE, Jumel K (2001) Light scattering. Curr Protoc Protein Sci Chapter 7:Unit 7.8

    Google Scholar 

  4. McLafferty FW, Breuker K, Jin M, Han X, Infusini G, Jiang H, Kong X, Begley TP (2007) Top-down MS, a powerful complement to the high capabilities of proteolysis proteomics. FEBS J 274:6256–6268

    Article  PubMed  CAS  Google Scholar 

  5. Domon B, Aebersold R (2006) Mass spectrometry and protein analysis. Science 312:212–217

    Article  Google Scholar 

  6. Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422:198–207

    Article  PubMed  CAS  Google Scholar 

  7. Cadene M, Chait BT (2000) A robust, detergent-friendly method for mass spectrometric analysis of integral membrane proteins. Anal Chem 72:5655–5658

    Article  PubMed  CAS  Google Scholar 

  8. Barrera NP, Di Bartolo N, Booth PJ, Robinson CV (2008) Micelles protect membrane complexes from solution to vacuum. Science 321:243–246

    Article  PubMed  CAS  Google Scholar 

  9. Cole JL, Lary JW, Moody TP, Laue TM (2008) Analytical ultracentrifugation: sedimentation velocity and sedimentation equilibrium. Methods Cell Biol 84:143–179

    Article  PubMed  CAS  Google Scholar 

  10. Howlett GJ, Minton AP, Rivas G (2006) Analytical ultracentrifugation for the study of protein association and assembly. Curr Opin Chem Biol 10:430–436

    Article  PubMed  CAS  Google Scholar 

  11. Ebel C (2011) Sedimentation velocity to characterize surfactants and solubilized membrane proteins. Methods 54:56–66

    Article  PubMed  CAS  Google Scholar 

  12. Fleming KG (2008) Determination of membrane protein molecular weight using sedimentation equilibrium analytical ultracentrifugation. Curr Protoc Protein Sci Chapter 7:Unit 7.12.1–7.12.13

    Google Scholar 

  13. ExPASy server, ProtParam tool: http://web.expasy.org/protparam/

  14. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248

    Article  PubMed  CAS  Google Scholar 

  15. Lowry OH (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265

    PubMed  CAS  Google Scholar 

  16. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150(1):76–85, Erratum in: Anal Biochem 163:279

    Article  PubMed  CAS  Google Scholar 

  17. Cummings MD, Farnum MA, Nelen MI (2006) Universal screening methods and applications of ThermoFluor. J Biomol Screen 11:854–863

    Article  PubMed  CAS  Google Scholar 

  18. Kean J, Cleverley RM, O’Ryan L, Ford RC, Prince SM, Derrick JP (2008) Characterization of a CorA Mg2+ transport channel from Methanococcus jannaschii using a Thermofluor-based stability assay. Mol Membr Biol 25:653–663

    Article  PubMed  CAS  Google Scholar 

  19. Cooper A, Nutley MA, Wadood A (2000) Differential scanning microcalorimetry. In: Harding SE, Chowdhry BZ (eds) Protein–ligand interactions: hydrodynamics and calorimetry. Oxford University Press, Oxford

    Google Scholar 

  20. Chattopadhyay A, London E (1984) Fluorimetric determination of critical micelle concentration avoiding interference from detergent charge. Anal Biochem 139:408–412

    Article  PubMed  CAS  Google Scholar 

  21. Dornmair K, Kiefer H, Jähnig F (1990) Refolding of an integral membrane protein. OmpA of Escherichia coli. J Biol Chem 265:18907–18911

    PubMed  CAS  Google Scholar 

  22. Schweizer M, Hindennach I, Garten W, Henning U (1978) Major proteins of the Escherichia coli outer cell envelope membrane. Interaction of protein II with lipopolysaccharide. Eur J Biochem 82:211–217

    Article  PubMed  CAS  Google Scholar 

  23. McLellan T (1982) Electrophoresis buffers for polyacrylamide gels at various pH. Anal Biochem 126:94–99

    Article  PubMed  CAS  Google Scholar 

  24. Schägger H, von Jagow G (1991) Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form. Anal Biochem 199:223–231

    Article  PubMed  Google Scholar 

  25. Krause F (2006) Detection and analysis of protein–protein interactions in organellar and prokaryotic proteomes by native gel electrophoresis: (Membrane) protein complexes and supercomplexes. Electrophoresis 27:2759–2781, Erratum in: Electrophoresis (2008) 29:5067

    Article  PubMed  CAS  Google Scholar 

  26. Dunn MJ, Corbett JM (1996) Two-dimensional polyacrylamide gel electrophoresis. Methods Enzymol 271:177–203

    Article  PubMed  CAS  Google Scholar 

  27. Righetti PG (1988) Isoelectric focusing as the crow flies. J Biochem Biophys Methods 16:99–108

    Article  PubMed  CAS  Google Scholar 

  28. Dunn MJ, Corbett JM (1994) Two-dimensional polyacrylamide gel electrophoresis using immobilized pH gradients in the first dimension. Methods Mol Biol 32:87–96

    PubMed  CAS  Google Scholar 

  29. Shaw MM, Riederer BM (2003) Sample preparation for two-dimensional gel electrophoresis. Proteomics 3:1408–1417

    Article  PubMed  CAS  Google Scholar 

  30. Syrový I, Hodný Z (1991) Staining and quantification of proteins by polyacrylamide gel electrophoresis. J Chromatogr 596:175–196

    Google Scholar 

  31. Steinberg TH (2009) Protein gel staining methods: an introduction and overview. Methods Enzymol 463:541–563

    Article  PubMed  CAS  Google Scholar 

  32. Gel filtration, principles and methods. GE Healthcare Handbook 18-1022-1018. https://www.gelifesciences.com/gehcls_images/GELS/RelatedContent/Files/1314807262343/litdoc18102218AK_20110831220049.pdf

  33. Schuck P (2003) A model for sedimentation in inhomogeneous media. I. Dynamic density gradients from sedimenting co-solutes. Biophys Chem 108:187–200

    Article  Google Scholar 

  34. Ralston G Introduction to analytical ultracentrifugation. Beckman booklet, https://www.beckmancoulter.com/wsrportal/bibliography?docname=361847.pdf

  35. McRorie DK, Voelker PJ Self-associating systems in the analytical ultracentrifuge. Beckman booklet, https://www.beckmancoulter.com/wsrportal/bibliography?docname=362784.pdf

  36. Layne E (1957) Spectrophotometric and turbidimetric methods for measuring proteins. Methods Enzymol 3:447–455

    Article  Google Scholar 

  37. Kueltzo LA, Ersoy B, Ralston JP, Middaugh CR (2003) Derivative absorbance spectroscopy and protein phase diagrams as tools for comprehensive protein characterization: a bGCSF case study. J Pharm Sci 92:1805–1820

    Article  PubMed  CAS  Google Scholar 

  38. Rozhkov SP, Goryunov AS (2010) Thermodynamic study of protein phases formation and clustering in model water-protein-salt solutions. Biophys Chem 151:22–28

    Article  PubMed  CAS  Google Scholar 

  39. Winder AF, Gent WLG (1971) Correction of light-scattering errors in spectrophotometric protein determinations. Biopolymers 10:1243–1251

    Article  PubMed  CAS  Google Scholar 

  40. Phan G, Remaut H, Wang T, Allen WJ, Pirker KF, Lebedev A, Henderson NS, Geibel S, Volkan E, Yan J, Kunze MB, Pinkner JS, Ford B, Kay CW, Li H, Hultgren SJ, Thanassi DG, Waksman G (2011) Crystal structure of the FimD usher bound to its cognate FimC-FimH substrate. Nature 474:49–53

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Daviter, T., Fronzes, R. (2013). Protein Sample Characterization. In: Williams, M., Daviter, T. (eds) Protein-Ligand Interactions. Methods in Molecular Biology, vol 1008. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-398-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-398-5_2

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-397-8

  • Online ISBN: 978-1-62703-398-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics