Skip to main content

Biophysical Screening for the Discovery of Small-Molecule Ligands

  • Protocol
  • First Online:
Protein-Ligand Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1008))

Abstract

Discovering small-molecule chemical probes of protein function has great potential to elucidate biological pathways and to provide early-stage proof-of-concept for target validation. Discovery of such probes therefore underpins many of the chemical biology and drug discovery efforts in both academia and the pharmaceutical industry. The process generally begins with screening small molecules to identify bona fide “hits” that bind non-covalently to a target protein. This chapter is concerned with the application of biophysical and structural techniques to small-molecule ligand screening, and with the validation of hits from both structural (binding mode) and energetic (binding affinity) stand-points. The methods discussed include differential scanning fluorimetry (thermal shift), fluorescence polarization (FP), surface plasmon resonance, ligand-observed NMR spectroscopy, isothermal titration calorimetry, and protein X-ray crystallography. The principles of these techniques and the fundamental nature of the observables used to detect macromolecule-ligand binding are briefly outlined. The practicalities, advantages, and disadvantages of each technique are described, particularly in the context of detecting weak affinities, as relevant to fragment screening. Fluorescence-based methods, which offer an attractive combination of high throughput and low cost are discussed in detail. It is argued that applying a combination of different methods provides the most robust and effective way to identify high-quality starting points for follow-up medicinal chemistry and to build structure–activity relationships that better inform effective development of high-quality, cell-active chemical probes by structure-based drug design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Crews CM (2010) Targeting the undruggable proteome: the small molecules of my dreams. Chem Biol 17:551–555

    Article  PubMed  CAS  Google Scholar 

  2. Schreiber SL (2005) Small molecules: the missing link in the central dogma. Nat Chem Biol 1:64–66

    Article  PubMed  CAS  Google Scholar 

  3. Frye SV (2010) The art of the chemical probe. Nat Chem Biol 6:159–161

    Article  PubMed  CAS  Google Scholar 

  4. Edwards AM, Bountra C, Kerr DJ, Willson TM (2009) Open access chemical and clinical probes to support drug discovery. Nat Chem Biol 5:436–440

    Article  PubMed  CAS  Google Scholar 

  5. Cole PA (2008) Chemical probes for histone-modifying enzymes. Nat Chem Biol 4:590–597

    Article  PubMed  CAS  Google Scholar 

  6. Hopkins AL, Groom CR (2002) The druggable genome. Nat Rev Drug Discov 1:727–730

    Article  PubMed  CAS  Google Scholar 

  7. Russ AP, Lampel S (2005) The druggable genome: an update. Drug Discov Today 10:1607–1610

    Article  PubMed  Google Scholar 

  8. Broach JR, Thorner J (1996) High-throughput screening for drug discovery. Nature 384:14–16

    Article  PubMed  CAS  Google Scholar 

  9. Spencer RW (1999) High-throughput screening of historic collections: observations on file size, biological targets, and file diversity. Biotechnol Bioeng 61:61–67

    Article  Google Scholar 

  10. Macarron R, Banks MN, Bojanic D et al (2011) Impact of high-throughput screening in biomedical research. Nat Rev Drug Discov 10:188–195

    Article  PubMed  CAS  Google Scholar 

  11. Bleicher KH, Böhm H-J, Müller K, Alanine AI (2003) Hit and lead generation: beyond high-throughput screening. Nat Rev Drug Discov 2:369–378

    Article  PubMed  CAS  Google Scholar 

  12. Shoichet BK (2006) Interpreting steep dose–response curves in early inhibitor discovery. J Med Chem 49:7274–7277

    Article  PubMed  CAS  Google Scholar 

  13. Babaoglu K, Simeonov A, Irwin JJ et al (2008) Comprehensive mechanistic analysis of hits from high-throughput and docking screens against beta-lactamase. J Med Chem 51:2502–2511

    Article  PubMed  CAS  Google Scholar 

  14. McGovern SL, Caselli E, Grigorieff N et al (2002) A common mechanism underlying promiscuous inhibitors from virtual and high-throughput screening. J Med Chem 45:1712–1722

    Article  PubMed  CAS  Google Scholar 

  15. Jhoti H, Cleasby A, Verdonk M, Williams G (2007) Fragment-based screening using X-ray crystallography and NMR spectroscopy. Curr Opin Chem Biol 11:485–493

    Article  PubMed  CAS  Google Scholar 

  16. Ciulli A, Blundell TL, Abell C (2008) Discovery and extrapolation of fragment structures towards drug design. In: Stroud RM, Finer-Moore J (eds) Computational and structural approaches to drug discovery: ligand–protein interactions. The Royal Society of Chemistry, Cambridge

    Google Scholar 

  17. Shuker SB, Hajduk PJ, Meadows RP, Fesik SW (1996) Discovering high-affinity ligands for proteins: SAR by NMR. Science 274:1531–1534

    Article  PubMed  CAS  Google Scholar 

  18. Hann MM, Leach AR, Harper G (2001) Molecular complexity and its impact on the probability of finding leads for drug discovery. J Chem Inf Comput Sci 41:856–864

    Article  PubMed  CAS  Google Scholar 

  19. Blundell TL, Jhoti H, Abell C (2002) High-throughput crystallography for lead discovery in drug design. Nat Rev Drug Discov 1:45–54

    Article  PubMed  CAS  Google Scholar 

  20. Rees DC, Congreve M, Murray CW, Carr R (2004) Fragment-based lead discovery. Nat Rev Drug Discov 3:660–672

    Article  PubMed  CAS  Google Scholar 

  21. Hajduk PJ, Greer J (2007) A decade of fragment-based drug design: strategic advances and lessons learned. Nat Rev Drug Discov 6:211–219

    Article  PubMed  CAS  Google Scholar 

  22. Congreve M, Chessari G, Tisi D, Woodhead AJ (2008) Recent developments in fragment-based drug discovery. J Med Chem 51:3661–3680

    Article  PubMed  CAS  Google Scholar 

  23. Ciulli A, Abell C (2007) Fragment-based approaches to enzyme inhibition. Curr Opin Biotechnol 18:489–496

    Article  PubMed  CAS  Google Scholar 

  24. Murray CW, Rees DC (2009) The rise of fragment-based drug discovery. Nat Chem 1:187–192

    Article  PubMed  CAS  Google Scholar 

  25. Erlanson DA (2012) Introduction to fragment-based drug discovery. Top Curr Chem 317:1–32

    Article  PubMed  CAS  Google Scholar 

  26. Lundqvist T (2005) The devil is still in the details—driving early drug discovery forward with biophysical experimental methods. Curr Opin Drug Discov Devel 8:513–519

    PubMed  CAS  Google Scholar 

  27. Ciulli A, Williams G, Smith AG, Blundell TL, Abell C (2006) Probing hot spots at protein–ligand binding sites: a fragment-based approach using biophysical methods. J Med Chem 49:4992–5000

    Article  PubMed  CAS  Google Scholar 

  28. Ericsson UB, Hallberg BM, Detitta GT, Dekker N, Nordlund P (2006) Thermofluor-based high-throughput stability optimization of proteins for structural studies. Anal Biochem 357:289–298

    Article  PubMed  CAS  Google Scholar 

  29. Cummings M, Farnum M, Nelen M (2006) Universal screening methods and applications of ThermoFluor®. J Biomol Screen 11:854–863

    Article  PubMed  CAS  Google Scholar 

  30. Lo M-C, Aulabaugh A, Jin G et al (2004) Evaluation of fluorescence-based thermal shift assays for hit identification in drug discovery. Anal Biochem 332:153–159

    Article  PubMed  CAS  Google Scholar 

  31. Kranz JK, Schalk-Hihi C (2011) Protein thermal shifts to identify low molecular weight fragments. Methods Enzymol 493:277–298

    Article  PubMed  CAS  Google Scholar 

  32. Reindl W, Strebhardt K, Berg T (2008) A high-throughput assay based on fluorescence polarization for inhibitors of the polo-box domain of polo-like kinase 1. Anal Biochem 383:205–209

    Article  PubMed  CAS  Google Scholar 

  33. Huang X (2003) Fluorescence polarization competition assay: the range of resolvable inhibitor potency is limited by the affinity of the fluorescent ligand. J Biomol Screen 8:34–38

    Article  PubMed  CAS  Google Scholar 

  34. Wiseman T, Williston S, Brandts JF, Lin LN (1989) Rapid measurement of binding constants and heats of binding using a new titration calorimeter. Anal Biochem 179:131–137

    Article  PubMed  CAS  Google Scholar 

  35. Turnbull WB, Daranas AH (2003) On the value of c: can low affinity systems be studied by isothermal titration calorimetry? J Am Chem Soc 125:14859–14866

    Article  PubMed  CAS  Google Scholar 

  36. Van der Merwe PA (2001) Surface plasmon resonance. In: Chowdhry B, Harding S (eds) Protein–ligand interactions: hydrodynamics and calorimetry. Oxford University Press, Oxford

    Google Scholar 

  37. Pellecchia M, Bertini I, Cowburn D et al (2008) Perspectives on NMR in drug discovery: a technique comes of age. Nat Rev Drug Discov 7(9):738–745

    Article  PubMed  CAS  Google Scholar 

  38. Lepre CA, Moore JM, Peng JW (2004) Theory and applications of NMR-based screening in pharmaceutical research. Chem Rev 104:3641–3676

    Article  PubMed  CAS  Google Scholar 

  39. Hajduk PJ, Sheppard G, Nettesheim D et al (1997) Discovery of potent nonpeptide inhibitors of stromelysin using SAR by NMR. J Am Chem Soc 119:5818–5827

    Article  CAS  Google Scholar 

  40. Śledź P, Abell C, Ciulli A (2012) Ligand-observed NMR in fragment-based approaches. In: Bertini I, McGreevy K, Parigi G (eds) NMR of biomolecules: towards mechanistic systems biology. Wiley-VCH, Weinheim

    Google Scholar 

  41. Hajduk PJ, Olejniczak E, Fesik S (1997) One-dimensional relaxation- and diffusion-edited NMR methods for screening compounds that bind to macromolecules. J Am Chem Soc 119:12257–12261

    Article  CAS  Google Scholar 

  42. Mayer M, Meyer B (1999) Characterization of ligand binding by saturation transfer difference NMR spectroscopy. Angew Chem Int Ed Engl 38:1784–1788

    Article  CAS  Google Scholar 

  43. Dalvit C, Fogliatto G, Stewart A, Veronesi M, Stockman B (2001) WaterLOGSY as a method for primary NMR screening: practical aspects and range of applicability. J Biomol NMR 21:349–359

    Article  PubMed  CAS  Google Scholar 

  44. Nienaber VL, Richardson PL, Klighofer V et al (2000) Discovering novel ligands for macromolecules using X-ray crystallographic screening. Nat Biotechnol 18:1105–1108

    Article  PubMed  CAS  Google Scholar 

  45. Blundell TL, Abell C, Cleasby A et al (2002) High throughput X-ray crystallography for drug discovery. In: Flower DR (ed) Drug design: cutting edge approaches. The Royal Society of Chemistry, Cambridge

    Google Scholar 

  46. Niesen FH, Berglund H, Vedadi M (2007) The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability. Nat Protocols 2:2212–2221

    Article  CAS  Google Scholar 

  47. Zhang J, Chung T, Oldenburg K (1999) A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J Biomol Screen 4:67–73

    Article  PubMed  Google Scholar 

  48. Berman HM, Westbrook J, Feng Z et al (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242

    Article  PubMed  CAS  Google Scholar 

  49. Philpott M, Yang J, Tumber T et al (2011) Bromodomain-peptide displacement assays for interactome mapping and inhibitor discovery. Mol BioSyst 7:2899–2908

    Article  PubMed  CAS  Google Scholar 

  50. Ciulli A, Scott DE, Ando M et al (2008) Inhibition of Mycobacterium tuberculosis pantothenate synthetase by analogues of the reaction intermediate. ChemBioChem 9:2606–2611

    Article  PubMed  CAS  Google Scholar 

  51. Hung AW, Silvestre HL, Wen S et al (2009) Application of fragment growing and fragment linking to the discovery of inhibitors of Mycobacterium tuberculosis pantothenate synthetase. Angew Chem Int Ed Engl 48:8452–8456

    Article  PubMed  CAS  Google Scholar 

  52. Buckley DL, Van Molle I, Gareiss PC et al (2012) Targeting the von Hippel-Lindau E3 ubiquitin ligase using small molecules to disrupt the VHL/HIF-1α interaction. J Am Chem Soc 134:4465–4468

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author wishes to thank several members of the Ciulli and Abell research groups (Department of Chemistry) and the Blundell research group (Department of Biochemistry) for productive collaboration and invaluable discussions over the years. The Ciulli laboratory is funded primarily but not exclusively by the UK Biotechnology and Biological Sciences Research Council (BBSRC). The author thanks the BBSRC for the award of a David Phillips Fellowship (BB/G023123/1). The author did not receive any financial contribution or writing assistance for the production of this chapter and declares no competing financial interests.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ciulli, A. (2013). Biophysical Screening for the Discovery of Small-Molecule Ligands. In: Williams, M., Daviter, T. (eds) Protein-Ligand Interactions. Methods in Molecular Biology, vol 1008. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-398-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-398-5_13

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-397-8

  • Online ISBN: 978-1-62703-398-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics