Skip to main content

Protein–Ligand Interactions: Fundamentals

  • Protocol
  • First Online:
Protein-Ligand Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1008))

Abstract

Here are described the basic mechanisms governing the interactions between proteins and their natural or manmade ligands, together with the principles underlying their analysis. The consequences of these principles are detailed for the simplest case of one-to-one binding. The general features of experimental measurements of biomolecular interactions arise from properties of the molecules involved and, thus, are common to many methods of detection. Consequently, an understanding of these principles greatly simplifies adoption and comparison of experimental methods and provides the rationale underlying many common protocols. In seeking to understand and interpret the results of experiments or identify possible sources of error these fundamental ideas are a constant guide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andrews SS, Bray D (2004) Stochastic simulation of chemical reactions with spatial resolution and single molecule detail. Phys Biol 1:137–151

    Article  PubMed  CAS  Google Scholar 

  2. Resat H, Petzold L, Pettigrew MF (2009) Kinetic modeling of biological systems. Methods Mol Biol 541:311–335

    Article  PubMed  CAS  Google Scholar 

  3. Davis ME, Madura JD, Sines J, Luty BA, Allison SA, McCammon JA (1991) Diffusion-controlled enzymatic reactions. Methods Enzymol 202:473–497

    Article  PubMed  CAS  Google Scholar 

  4. Northrup SH, Erickson HP (1992) Kinetics of protein–protein association explained by Brownian dynamics computer simulation. Proc Natl Acad Sci U S A 89:3338–3342

    Article  PubMed  CAS  Google Scholar 

  5. Camacho CJ, Weng Z, Vajda S, DeLisi C (1999) Free energy landscapes of encounter complexes in protein–protein association. Biophys J 76:1166–1178

    Article  PubMed  CAS  Google Scholar 

  6. Schreiber G, Fersht AR (1996) Rapid, electrostatically assisted association of proteins. Nat Struct Biol 3:427–431

    Article  PubMed  CAS  Google Scholar 

  7. Held M, Noé F (2011) Calculating kinetics and pathways of protein–ligand association. Eur J Cell Biol 91:357–364

    Article  PubMed  Google Scholar 

  8. Schreiber G, Haran G, Zhou HX (2009) Fundamental aspects of protein–protein association kinetics. Chem Rev 109:839–860

    Article  PubMed  CAS  Google Scholar 

  9. Kiel C, Selzer T, Shaul Y, Schreiber G, Herrmann C (2004) Electrostatically optimized Ras-binding Ral guanine dissociation stimulator mutants increase the rate of association by stabilizing the encounter complex. Proc Natl Acad Sci U S A 101:9223–9228

    Article  PubMed  CAS  Google Scholar 

  10. Gaboulline RR, Wade RC (2002) Biomolecular diffusional association. Curr Opin Struct Biol 12:204–213

    Article  Google Scholar 

  11. Gutfreund H (1995) Kinetics for the life sciences: receptors, transmitters and catalysts. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  12. Liu T, Lin Y, Wen X, Jorrisen RN, Gilson MK (2007) BindingDB: a web-accessible database of experimentally determined protein–ligand binding affinities. Nucleic Acids Res 35:D198–D201

    Article  PubMed  CAS  Google Scholar 

  13. Ladbury JE, Klebe G, Freire E (2010) Adding calorimetric data to decision making in lead discovery. Nat Rev Drug Discov 9:23–27

    Article  PubMed  CAS  Google Scholar 

  14. Olsson TSG, Ladbury JE, Pitt WR, Williams MA (2011) The extent of enthalpy-entropy compensation in protein–ligand interactions. Protein Sci 20:1607–1618

    Article  PubMed  CAS  Google Scholar 

  15. Dunitz JD (1995) Win some, lose some: enthalpy-entropy compensation. Chem Biol 2:709–712

    Article  PubMed  CAS  Google Scholar 

  16. Olsson TSG, Williams MA, Pitt WR, Ladbury JE (2008) The thermodynamics of protein–ligand interaction and solvation: Insights for ligand design. J Mol Biol 384:1002–1017

    Article  PubMed  CAS  Google Scholar 

  17. De Godoy LM et al (2008) Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast. Nature 455:1251–1254, data in Supp. Fig. 5 with haploid cell volume of 42 μm3

    Article  PubMed  Google Scholar 

  18. Pawson T, Nash P (2003) Assembly of cell regulatory systems through protein interaction domains. Science 300:445–452

    Article  PubMed  CAS  Google Scholar 

  19. Kavanagh KL, Jörnvall H, Persson B, Oppermann U (2008) Medium- and short-chain dehydrogenase/reductase gene and protein families: the SDR superfamily: functional and structural diversity within a family of metabolic and regulatory enzymes. Cell Mol Life Sci 65:3895–3906

    Article  PubMed  CAS  Google Scholar 

  20. Kahraman A, Richard J, Morris RJ, Laskowski RA, Favia AD, Thornton JM (2010) On the diversity of physicochemical environments experienced by identical ligands in binding pockets of unrelated proteins. Proteins 78:1120–1136

    Article  PubMed  CAS  Google Scholar 

  21. Williams MA, Ladbury JE (2003) Hydrogen bonds in protein–ligand complexes. In: Boehm H-J, Schneider G (eds) Molecular recognition in protein–ligand interactions. Wiley, New York

    Google Scholar 

  22. McDonald IK, Thornton JM (1994) Satisfying hydrogen bond potentials in proteins. J Mol Biol 238:777–793

    Article  PubMed  CAS  Google Scholar 

  23. Williams MA, Goodfellow JM, Thornton JM (1994) Buried waters and internal cavities in monomeric proteins. Protein Sci 3:1224–1235

    Article  PubMed  CAS  Google Scholar 

  24. Fersht AR et al (1985) Hydrogen bonding and biological specificity analysed by protein engineering. Nature 314:235–238

    Article  PubMed  CAS  Google Scholar 

  25. Hann MM, Leach AR, Harper G (2001) Molecular complexity and its impact on the probability of finding leads for drug discovery. J Chem Inf Comput Sci 41:856–864

    Article  PubMed  CAS  Google Scholar 

  26. Ferrara P, Gohlke H, Price DJ, Klebe G, Brooks CL 3rd (2004) Assessing scoring functions for protein ligand interactions. J Med Chem 47:3032–3047

    Article  PubMed  CAS  Google Scholar 

  27. Sotriffer CA, Sanschagrin P, Matter H, Klebe G (2008) SFCscore: scoring functions for affinity prediction of protein–ligand complexes. Proteins 73:395–419

    Article  PubMed  CAS  Google Scholar 

  28. Jorgensen WL (2009) Efficient lead discovery and optimization. Acc Chem Res 42:724–733

    Article  PubMed  CAS  Google Scholar 

  29. Ladbury JE, Williams MA (2004) The extended interface: measuring non-local effects in biomolecular interactions. Curr Opin Struct Biol 14:562–569

    Article  PubMed  CAS  Google Scholar 

  30. Koh JT (2002) Engineering selectivity and discrimination into ligand-receptor interfaces. Chem Biol 9:17–23

    Article  PubMed  CAS  Google Scholar 

  31. Mendel CM, Mendel DB (1985) “Non specific” binding a problem and a solution. Biochem J 228:269–272

    PubMed  CAS  Google Scholar 

  32. Zerbe BS, Hall DR, Vajda S, Wjitty A, Kozakov D (2012) Relationship between hot spot residues and ligand binding hot spots in protein–protein interfaces. J Chem Inf Model. doi:10.1021/ci300175u

  33. Ciulli A et al (2006) Probing hot spots at protein–ligand binding sites: a fragment-based approach. J Med Chem 49:4992–5000

    Article  PubMed  CAS  Google Scholar 

  34. Ciulli A, Abell C (2007) Fragment-based approaches to enzyme inhibition. Curr Opin Biotechnol 18:489–496

    Article  PubMed  CAS  Google Scholar 

  35. Hadjuk PJ, Greer J (2007) A decade of fragment-based drug design: strategic advances and lessons learned. Nat Rev Drug Discov 6:211–219

    Article  Google Scholar 

  36. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  37. Punta M et al (2012) The Pfam protein families database. Nucleic Acids Res 40:D290–D301

    Article  PubMed  CAS  Google Scholar 

  38. Allen FH et al (2002) The Cambridge structural database: a quarter of a million crystal structures and rising. Acta Cryst B58:380–388

    CAS  Google Scholar 

  39. Bruno IJ et al (1997) Isostar: a library of information about non-bonded interactions. J Comput Aided Mol Des 11:525–537

    Article  PubMed  CAS  Google Scholar 

  40. Günther J, Bergner A, Hendlich M, Klebe G (2003) Utilising structural knowledge in drug design strategies: applications using Relibase. J Mol Biol 326:621–636

    Article  PubMed  Google Scholar 

  41. Berman HM et al (2000) The protein data bank. Nucleic Acids Res 28:235–242

    Article  PubMed  CAS  Google Scholar 

  42. Laskowski RA (2009) PDBsum new things. Nucleic Acids Res 37:D355–D359

    Article  PubMed  CAS  Google Scholar 

  43. Gaulton A et al (2011) ChEMBL: a large-scale bioactivity database for chemical biology and drug discovery. Nucleic Acids Res 40:D1100–D1107

    Article  PubMed  Google Scholar 

  44. Scheer M et al (2011) BRENDA, the enzyme information system in 2011. Nucleic Acids Res 39:670–676

    Article  Google Scholar 

  45. Bolton E, Wang Y, Thiessen PA, Bryant SH (2008) PubChem: integrated platform of small molecules and biological activities. In: Annual Reports in Computational Chemistry, Vol 4, American Chemical Society, Washington

    Google Scholar 

  46. Irwin JJ, Shoichet BK (2005) ZINC—a free database of commercially available compounds for virtual screening. J Chem Inf Model 45:177–182

    Article  PubMed  CAS  Google Scholar 

  47. Wang Z-X (1995) An exact mathematical expression for describing competative binding of two different ligands to a protein molecule. FEBS Lett 360:111–114

    Article  PubMed  CAS  Google Scholar 

  48. Cheng Y-C, Prushoff WH (1973) Relationship between the inhibition constant (KI) and the concentration of inhibitor which causes 50 % inhibition (IC50) of an enzymatic reaction. Biochem Pharm 22:3099–3108

    Article  PubMed  CAS  Google Scholar 

  49. Lazareno S, Birdsall NJM (1993) Estimation of antagonist Kb from inhibition curves in functional experiments: alternatives to the Cheng-Prushoff equation. Trends Pharm Sci 14:237–239

    Article  PubMed  CAS  Google Scholar 

  50. Sigurskjold BW (2000) Exact analysis of competition ligand binding by displacement isothermal titration calorimetry. Anal Biochem 277:260–266

    Article  PubMed  CAS  Google Scholar 

  51. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2007) Numerical recipes: the art of scientific computing, 3rd edn. Cambridge University Press, New York

    Google Scholar 

  52. Johnson ML (2008) Non-linear least-squares fitting methods. Meth Cell Biol 84:781–805

    Article  Google Scholar 

  53. Tellinghuisen J (2008) Stupid statistics! Meth Cell Biol 84:739–780

    CAS  Google Scholar 

  54. Straume M, Johnson ML (1992) Analysis of residuals: criteria for determining goodness of fit. Meth Enzymol 210:87–105

    Article  PubMed  CAS  Google Scholar 

  55. Myszka DG et al (2003) The ABRF-MIRG ’02 Study: assembly state, thermodynamic, and kinetic analysis of an enzyme/inhibiter interaction. J Biomol Tech 14:247–269

    PubMed  CAS  Google Scholar 

  56. Copeland RA (2005) Evaluation of enzyme inhibitors in drug discovery: a guide for medicinal chemists and pharmacologists. Wiley, New York

    Google Scholar 

  57. Copeland RA (2000) Enzymes: a practical introduction to structure, mechanism and data analysis. Wiley, New York

    Google Scholar 

  58. Johnson ML (1992) Why, when, and how biochemists should use least squares. Anal Biochem 206:215–225

    Article  PubMed  CAS  Google Scholar 

  59. Delahunty MD, Mack JPG (1993) A general method of curve-fitting and error analysis using a spreadsheet: determination of the binding constants of tight binding ligands in variable volume assays. Comput Appl Biosci 9:127–131

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Williams, M.A. (2013). Protein–Ligand Interactions: Fundamentals. In: Williams, M., Daviter, T. (eds) Protein-Ligand Interactions. Methods in Molecular Biology, vol 1008. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-398-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-398-5_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-397-8

  • Online ISBN: 978-1-62703-398-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics