Skip to main content

Improving Peptide Identification Using Empirical Scoring Systems

  • Protocol
  • First Online:
Mass Spectrometry Data Analysis in Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1007))

Abstract

Peptides and proteins are routinely identified from peptide fragmentation spectra acquired in a mass spectrometer, analyzed by database search engines. The types of fragments that can be formed are known, and it is also well appreciated that certain fragment types are more common or more informative than others. However, most search engines do not use detailed knowledge of peptide fragmentation, but rather consider a limited range of fragments, giving each an equivalent weighting in their scoring system that decides which results are likely to be correct. This chapter discusses efforts to make use of information about the frequency of observation of different fragment ion types in order to produce more sophisticated and sensitive scoring systems and demonstrates how these new scoring systems are particularly powerful for analysis of electron capture or electron transfer dissociation data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Henzel WJ, Billeci TM, Stults JT, Wong SC, Grimley C, Watanabe C (1993) Identifying proteins from two-dimensional gels by molecular mass searching of peptide fragments in protein sequence databases. Proc Natl Acad Sci U S A 90(11):5011–5015

    Article  PubMed  CAS  Google Scholar 

  2. Eng JK, McCormack AL, Yates JR (1994) An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectrom 5:976–989

    Article  CAS  Google Scholar 

  3. Nesvizhskii AI (2010) A survey of computational methods and error rate estimation procedures for peptide and protein identification in shotgun proteomics. J Proteomics 73(11):2092–2123

    Article  PubMed  CAS  Google Scholar 

  4. Zubarev RA, Horn DM, Fridriksson EK, Kelleher NL, Kruger NA, Lewis MA, Carpenter BK, McLafferty FW (2000) Electron capture dissociation for structural characterization of multiply charged protein cations. Anal Chem 72(3):563–573

    Article  PubMed  CAS  Google Scholar 

  5. Syka JE, Coon JJ, Schroeder MJ, Shabanowitz J, Hunt DF (2004) Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc Natl Acad Sci U S A 101(26):9528–9533

    Article  PubMed  CAS  Google Scholar 

  6. Biemann K (1990) Appendix 5. Nomenclature for peptide fragment ions (positive ions). Methods Enzymol 193:886–888

    Article  PubMed  CAS  Google Scholar 

  7. Paizs B, Suhai S (2005) Fragmentation pathways of protonated peptides. Mass Spectrom Rev 24(4):508–548

    Article  PubMed  CAS  Google Scholar 

  8. Zubarev RA (2004) Electron-capture dissociation tandem mass spectrometry. Curr Opin Biotechnol 15(1):12–16

    Article  PubMed  CAS  Google Scholar 

  9. Wysocki VH, Tsaprailis G, Smith LL, Breci LA (2000) Mobile and localized protons: a framework for understanding peptide dissociation. J Mass Spectrom 35(12):1399–1406

    Article  PubMed  CAS  Google Scholar 

  10. Kapp EA, Schutz F, Reid GE, Eddes JS, Moritz RL, O’Hair RA, Speed TP, Simpson RJ (2003) Mining a tandem mass spectrometry database to determine the trends and global factors influencing peptide fragmentation. Anal Chem 75(22):6251–6264

    Article  PubMed  CAS  Google Scholar 

  11. Huang Y, Triscari JM, Tseng GC, Pasa-Tolic L, Lipton MS, Smith RD, Wysocki VH (2005) Statistical characterization of the charge state and residue dependence of low-energy CID peptide dissociation patterns. Anal Chem 77(18):5800–5813

    Article  PubMed  CAS  Google Scholar 

  12. Swaney DL, McAlister GC, Wirtala M, Schwartz JC, Syka JE, Coon JJ (2007) Supplemental activation method for high-efficiency electron-transfer dissociation of doubly protonated peptide precursors. Anal Chem 79(2):477–485

    Article  PubMed  CAS  Google Scholar 

  13. Chalkley RJ, Medzihradszky KF, Lynn AJ, Baker PR, Burlingame AL (2010) Statistical analysis of peptide electron transfer dissociation fragmentation mass spectrometry. Anal Chem 82(2):579–584

    Article  PubMed  CAS  Google Scholar 

  14. Kandasamy K, Pandey A, Molina H (2009) Evaluation of several MS/MS search algorithms for analysis of spectra derived from electron transfer dissociation experiments. Anal Chem 81(17):7170–7180

    Article  PubMed  CAS  Google Scholar 

  15. Baker PR, Medzihradszky KF, Chalkley RJ (2010) Improving software performance for peptide ETD data analysis by implementation of charge-state and sequence-dependent scoring. Mol Cell Proteomics 9(9):1795–1803

    Google Scholar 

  16. Sun RX, Dong MQ, Song CQ, Chi H, Yang B, Xiu LY, Tao L, Jing ZY, Liu C, Wang LH, Fu Y, He SM (2010) Improved peptide identification for proteomic analysis based on comprehensive characterization of electron transfer dissociation spectra. J Proteome Res 9(12):6354–6367

    Article  PubMed  CAS  Google Scholar 

  17. Perkins DN, Pappin DJ, Creasy DM, Cottrell JS (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20(18):3551–3567

    Article  PubMed  CAS  Google Scholar 

  18. Dancik V, Addona TA, Clauser KR, Vath JE, Pevzner PA (1999) De novo peptide sequencing via tandem mass spectrometry. J Comput Biol 6(3–4):327–342

    Article  PubMed  CAS  Google Scholar 

  19. Tabb DL, Smith LL, Breci LA, Wysocki VH, Lin D, Yates JR 3rd (2003) Statistical characterization of ion trap tandem mass spectra from doubly charged tryptic peptides. Anal Chem 75(5):1155–1163

    Article  PubMed  CAS  Google Scholar 

  20. Fenyo D, Beavis RC (2003) A method for assessing the statistical significance of mass spectrometry-based protein identifications using general scoring schemes. Anal Chem 75(4):768–774

    Article  PubMed  Google Scholar 

  21. Li W, Song C, Bailey DJ, Tseng GC, Coon JJ, Wysocki VH (2011) Statistical analysis of electron transfer dissociation pairwise fragmentation patterns. Anal Chem 83(24):9540–9545

    Article  PubMed  CAS  Google Scholar 

  22. Zhang Z (2004) Prediction of low-energy collision-induced dissociation spectra of peptides. Anal Chem 76(14):3908–3922

    Article  PubMed  CAS  Google Scholar 

  23. Zhang Z (2005) Prediction of low-energy collision-induced dissociation spectra of peptides with three or more charges. Anal Chem 77(19):6364–6373

    Article  PubMed  CAS  Google Scholar 

  24. Gibbons FD, Elias JE, Gygi SP, Roth FP (2004) SILVER helps assign peptides to tandem mass spectra using intensity-based scoring. J Am Soc Mass Spectrom 15(6):910–912

    Article  PubMed  CAS  Google Scholar 

  25. Li W, Ji L, Goya J, Tan G, Wysocki VH (2011) SQID: an intensity-incorporated protein identification algorithm for tandem mass spectrometry. J Proteome Res 10(4):1593–1602

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by this grant has now been replaced by the one already listed. The National Institute of General Medical Sciences, NIH NIGMS P41GM103481, from the National Institutes of Health, and the Vincent J. Coates Foundation.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Chalkley, R.J. (2013). Improving Peptide Identification Using Empirical Scoring Systems. In: Matthiesen, R. (eds) Mass Spectrometry Data Analysis in Proteomics. Methods in Molecular Biology, vol 1007. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-392-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-392-3_7

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-391-6

  • Online ISBN: 978-1-62703-392-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics