Skip to main content

Next-Generation Sequencing for High-Throughput Molecular Ecology: A Step-by-Step Protocol for Targeted Multilocus Genotyping by Pyrosequencing

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1006))

Abstract

Next-generation sequencing technology can now provide population biologists and phylogeographers with information at the genomic scale; however, many pertinent questions in population genetics and phylogeography can be answered effectively with modest levels of genomic information. For the past two decades, most population-level studies have lacked nuclear DNA (nDNA) sequence data due to the complications and cost of amplifying and sequencing diploid loci. However, pyrosequencing of emulsion PCR reactions, amplifying from only one molecule at a time, can generate megabases of clonally amplified loci at high coverage, thereby greatly simplifying allelic sequence determination. Here, we present a step-by-step methodology for utilizing the 454 GS FLX Titanium pyrosequencing platform to simultaneously sequence 16 populations (at 20 individuals per population) at 10 different nDNA loci (3,200 loci in total) in one plate of sequencing for less than the cost of traditional Sanger sequencing.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Avise JC (1998) The history and purview of phylogeography: a personal reflection. Mol Ecol 7:371–379

    Article  Google Scholar 

  2. Avise JC, Arnold J, Ball RM et al (1987) Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Annu Rev Ecol Systemat 18:489–522

    Google Scholar 

  3. Avise JC (2004) Molecular markers, natural history, and evolution. Sinauer Associates, Sunderland, MA

    Google Scholar 

  4. Hoelzer GA (1997) Inferring phylogenies from mtDNA variation: mitochondrial-gene trees versus nuclear-gene trees revisited. Evolution 51:622–626

    Article  Google Scholar 

  5. Karl SA, Avise JC (1992) Balancing selection at allozyme loci in oysters: implications from nuclear RFLPs. Science 256:100–102

    Article  PubMed  CAS  Google Scholar 

  6. Karl SA, Avise JC (1993) PCR-based assays of mendelian polymorphisms from anonymous single-copy nuclear DNA: techniques and applications for population genetics. Mol Biol Evol 10:342–361

    PubMed  CAS  Google Scholar 

  7. Hare M (2001) Prospects for nuclear gene phylogeography. Trends Ecol Evol 16:700–706

    Article  Google Scholar 

  8. Bowen BW, Bass AL, Soares L et al (2005) Conservation implications of complex population structure: lessons from the loggerhead turtle (Caretta caretta). Mol Ecol 14:2389–2402

    Article  PubMed  CAS  Google Scholar 

  9. Zhang D-X, Hewitt GM (2003) Nuclear DNA analyses in genetic studies of populations: practice, problems and prospects. Mol Ecol 12:563–584

    Article  PubMed  CAS  Google Scholar 

  10. Creer S (2007) Choosing and using introns in molecular phylogenetics. Bioinformatics 3:99–108

    CAS  Google Scholar 

  11. Mallarino R, Bermingham E, Willmott KR et al (2005) Molecular systematics of the butterfly genus Ithomia (Lepidoptera: Ithomiinae): a composite phylogenetic hypothesis based on seven genes. Mol Phylogenet Evol 34:625–644

    Article  PubMed  CAS  Google Scholar 

  12. Huang Z-S, Ji Y-J, Zhang D-X (2008) Haplotype reconstruction for scnp DNA: a consensus vote approach with extensive sequence data from populations of the migratory locust (Locusta migratoria). Mol Ecol 17:1930–1947

    Article  PubMed  CAS  Google Scholar 

  13. Salem RM, Wessel J, Schork NJ (2005) A comprehensive literature review of haplotyping software and methods for use with unrelated individuals. Hum Genom 2:39–66

    Article  CAS  Google Scholar 

  14. Metzker ML (2009) Sequencing technologies—the next generation. Nat Rev Genet 11:31–46

    Article  PubMed  Google Scholar 

  15. Allendorf FW, Hohenlohe PA, Luikart G (2010) Genomics and the future of conservation genetics. Nat Rev Genet 11:697–709

    Article  PubMed  CAS  Google Scholar 

  16. Margulies M, Egholm M, Altman WE et al (2005) Genome sequencing in open microfabricated high density picoliter reactors. Nature 437:376

    PubMed  CAS  Google Scholar 

  17. Leamon JH, Lee WL, Tartaro KR et al (2003) A massively parallel PicoTiterPlate based platform for discrete picoliter-scale polymerase chain reactions. Electrophoresis 24:3769–3777

    Article  PubMed  CAS  Google Scholar 

  18. Ekblom R, Galindo J (2010) Applications of next generation sequencing in molecular ecology of non-model organisms. Heredity 107:1–15

    Article  PubMed  Google Scholar 

  19. Emerson KJ, Merz CR, Catchen JM et al (2010) Resolving postglacial phylogeography using high-throughput sequencing. Proc Natl Acad Sci 107:1–5

    Article  Google Scholar 

  20. Baird NA, Etter PD, Atwood TS et al (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS One 3:e3376

    Article  PubMed  Google Scholar 

  21. Miller MR, Dunham JP, Amores A et al (2007) Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers. Genome Res 17:240–248

    Article  PubMed  CAS  Google Scholar 

  22. Hohenlohe PA, Bassham S, Etter PD et al (2010) Population genomics of parallel adaptation in threespine stickleback using sequenced RAD tags. PLoS Genet 6:e1000862

    Article  PubMed  Google Scholar 

  23. Thomson RC, Wang IJ, Johnson JR (2010) Genome-enabled development of DNA markers for ecology, evolution and conservation. Mol Ecol 19:2184–2195

    Article  PubMed  CAS  Google Scholar 

  24. Friesen VL (2000) Introns. In: Baker AJ (ed) Molecular methods in ecology. Blackwell Science Ltd., Oxford, pp 274–294

    Google Scholar 

  25. Puritz JB, Addison JA, Toonen RJ (2012) Next-generation phylogeography: a targeted approach for multilocus sequencing of non-model organisms. PLoS One 7(3):e34241

    Article  PubMed  CAS  Google Scholar 

  26. Drummond AJ, Ashton B, Buxton S, Cheung M, Cooper A, Duran C, Field M, Heled J, Kearse M, Markowitz S, Moir R, Stones-Havas S, Sturrock S, Thierer T (2011) Geneious 5.4.

    Google Scholar 

  27. Meyer M, Stenzel U, Hofreiter M (2008) Parallel tagged sequencing on the 454 platform. Nat Protoc 3:267–278

    Article  PubMed  CAS  Google Scholar 

  28. Binladen J, Gilbert MTP, Bollback JP et al (2007) The use of coded PCR primers enables high-throughput sequencing of multiple homolog amplification products by 454 parallel sequencing. PLoS One 2:e197

    Article  PubMed  Google Scholar 

  29. Lahr DJG, Katz LA (2009) Reducing the impact of PCR-mediated recombination in molecular evolution and environmental studies using a new-generation high-fidelity DNA polymerase. Biotechniques 47:857–866

    PubMed  CAS  Google Scholar 

  30. Gilles A, Meglecz E, Pech N et al (2011) Accuracy and quality assessment of 454 GS-FLX Titanium pyrosequencing. BMC Genom 12:245

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Maria Byrne, Sergio Barbosa, Carson Keever, Jason Addison, Michael Hart, and Richard Grosberg for their extensive collaborative and supportive efforts with this project. We also thank Clarissa Murch for extensive help with project organization and lab work. Lastly, we would like to thank Scott Hunicke-Smith of University of Texas for his vast assistance with implementing this unique 454 sequencing project and the Hawai’i Institute of Marine Biology EPSCoR core genetics facility. This project was funded a grant from the National Science Foundation (Bio-OCE 0623699). This is contribution #1520 from the Hawai’i Institute of Marine Biology and 8754 from the School of Ocean and Earth Sciences and Technology (SOEST).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Puritz, J.B., Toonen, R.J. (2013). Next-Generation Sequencing for High-Throughput Molecular Ecology: A Step-by-Step Protocol for Targeted Multilocus Genotyping by Pyrosequencing. In: Kantartzi, S. (eds) Microsatellites. Methods in Molecular Biology, vol 1006. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-389-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-389-3_6

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-388-6

  • Online ISBN: 978-1-62703-389-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics