Skip to main content

Molecular Mapping and Breeding with Microsatellite Markers

  • Protocol
  • First Online:
Microsatellites

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1006))

Abstract

In genetics databases for crop plant species across the world, there are thousands of mapped loci that underlie quantitative traits, oligogenic traits, and simple traits recognized by association mapping in populations. The number of loci will increase as new phenotypes are measured in more diverse genotypes and genetic maps based on saturating numbers of markers are developed. A period of locus reevaluation will decrease the number of important loci as those underlying mega-environmental effects are recognized. A second wave of reevaluation of loci will follow from developmental series analysis, especially for harvest traits like seed yield and composition. Breeding methods to properly use the accurate maps of QTL are being developed. New methods to map, fine map, and isolate the genes underlying the loci will be critical to future advances in crop biotechnology. Microsatellite markers are the most useful tool for breeders. They are codominant, abundant in all genomes, highly polymorphic so useful in many populations, and both economical and technically easy to use. The selective genotyping approaches, including genotype ranking (indexing) based on partial phenotype data combined with favorable allele data and bulked segregation event (segregant) analysis (BSA), will be increasingly important uses for microsatellites. Examples of the methods for developing and using microsatellites derived from genomic sequences are presented for monogenic, oligogenic, and polygenic traits. Examples of successful mapping, fine mapping, and gene isolation are given. When combined with high-throughput methods for genotyping and a genome sequence, the use of association mapping with microsatellite markers will provide critical advances in the analysis of crop traits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Iqbal MJ, Lightfoot DA (2004) Application of DNA markers: soybean improvement. In: L″rz H, Wenzel G (eds) Molecular marker systems in plant breeding and crop improvement. Springer, New York, p 475

    Google Scholar 

  2. Stefaniak TR, Hyten DL, Pantalone VR, Klarer A, Pfeiffer TW (2006) Soybean cultivars resulted from more recombination events than unselected lines in the same population. Crop Sci 46:43–51

    Article  CAS  Google Scholar 

  3. Lightfoot DA (2008) Soybean genomics: developments through the use of cultivar Forrest. Int J Plant Genomics 2008:1–22. doi:10.1155/2008/793158

    Article  Google Scholar 

  4. Anand SC (1992) Registration of ‘Hartwig’ soybean. Crop Sci 32:1060–1070

    Article  Google Scholar 

  5. Arelli AP (1994) Inheritance of resistance to Heterodera glycines race 3 in soybean accessions. Plant Dis 78:898–900

    Article  Google Scholar 

  6. Hnetkovsky N, Chang SJC, Doubler TW, Gibson PT, Lightfoot DA (1996) Genetic mapping of loci underlying field resistance to soybean sudden death syndrome (SDS). Crop Sci 36:393–400

    Article  CAS  Google Scholar 

  7. Prabhu RR, Njiti VN, Bell-Johnson B, Johnson JE, Schmidt ME, Klein JH, Lightfoot DA (1999) Selecting soybean cultivars for dual resistance to soybean cyst nematode and sudden death syndrome using two DNA markers. Crop Sci 39:982–987

    Article  CAS  Google Scholar 

  8. Njiti VN, Johnson JE, Torto TA, Gray LE, Lightfoot DA (2001) Inoculum rate influences selection for field resistance to soybean sudden death syndrome in the greenhouse. Crop Sci 41:1726–1731

    Article  Google Scholar 

  9. Kassem MA, Shultz J, Meksem K, Cho Y, Wood AJ, Iqbal MJ, Lightfoot DA (2006) An updated ‘Essex’ by ‘Forrest’ linkage map and first composite interval map of QTL underlying six soybean traits. Theor Appl Genet 113:1015–1026

    Article  PubMed  CAS  Google Scholar 

  10. Shultz JL, Kazi S, Afzal JA, Bashir R, Lightfoot DA (2007) The development of BAC-end sequence-based microsatellite markers and placement in the physical and genetic maps of soybean. Theor Appl Genet 114:1081–1090

    Article  PubMed  CAS  Google Scholar 

  11. Webb DM, Baltazar BM, Rao-Arelli AP, Schupp J, Keim P, Clayton K, Ferreira AR, Owens T, Beavis WD (1995) QTLs affecting soybean cyst-nematode resistance. Theor Appl Genet 91:574–581

    Article  CAS  Google Scholar 

  12. Webb DM (1996) Soybean cyst nematode resistant soybeans and methods of breeding and identifying resistant plants. US Patent 5,491,081

    Google Scholar 

  13. Hauge BM, Wang ML, Parsons JD, Parnell LD (2001) Nucleic acid molecules and other molecules associated with soybean cyst nematode resistance. US patent WO 0151627-A 19-JUL-2001

    Google Scholar 

  14. Lightfoot DA (2001) Soybean sudden death syndrome resistant soybeans, soybean cyst nematode resistant soybeans and methods of breeding and identifying resistant plants. US Patent 6,300,541

    Google Scholar 

  15. Lightfoot DA, Meksem K (2011) Isolated soybean cyst nematode and sudden death syndrome polypeptides. US Patent 7,902,337

    Google Scholar 

  16. Webb DM (2000) Positional cloning of soybean cyst nematode resistance genes. US Patent 6,162,967

    Google Scholar 

  17. Webb DM (2003) Quantitative trait loci associated with soybean cyst nematode resistance and uses thereof. US Patent 6,538,175

    Google Scholar 

  18. Song QJ, Marek LF, Shoemaker RC, Lark KG, Concibido VC, Delannay X, Specht JE, Cregan PB (2004) A new integrated genetic linkage map of the soybean. Theor Appl Genet 109:122–128

    Article  PubMed  CAS  Google Scholar 

  19. Shultz JL, Jayaraman D, Shopinski KL, Iqbal MJ, Kazi S, Zobrist K, Bashir R, Yaegashi S, Lavu N, Afzal AJ, Yesudas CR, Kassem MA, Wu C, Zhang HB, Town CD, Meksem K, Lightfoot DA (2006) The soybean genome database (SoyGD): a browser for display of duplicated, polyploid, regions and sequence tagged sites on the integrated physical and genetic maps of glycine max. Nucleic Acid Res 34:D758–D765

    Article  PubMed  CAS  Google Scholar 

  20. Wu X, Ren C, Joshi T, Vuong T, Xu D, Nguyen HT (2010) SNP discovery by high-throughput sequencing in soybean. BMC Genomics 11:469

    Article  PubMed  Google Scholar 

  21. Zhu YL, Song QJ, Hyten DL, van Tassell CP, Matukumalli LK, Grimm DR, Hyatt SM, Fickus EW, Young ND, Cregan PB (2003) Single-nucleotide polymorphisms in soybean. Genetics 163:1123–1134

    PubMed  CAS  Google Scholar 

  22. Lam HM, Xu X, Liu X et al (2010) Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nat Genet 42:1053–1062

    Article  PubMed  CAS  Google Scholar 

  23. Lightfoot DA, Njiti VN, Gibson PT, Kassem MA, Iqbal MJ, Meksem K (2005) Registration of Essex  ×  Forrest recombinant inbred line (RIL) mapping population. Crop Sci 45:1678–1681

    Article  Google Scholar 

  24. Kazi S, Njiti VN, Doubler TW, Yuan J, Iqbal MJ, Cianzio S, Lightfoot DA (2007) Registration of the Flyer by Hartwig recombinant inbred line mapping population. J Plant Reg 1:175–178

    Article  Google Scholar 

  25. Njiti VN, Doubler TW, Suttner RJ, Gray LE, Gibson PT, Lightfoot DA (1998) Resistance to soybean sudden death syndrome and root colonization by Fusarium solani f. sp. glycines in near-isogeneic lines. Crop Sci 38:472–477

    Article  Google Scholar 

  26. Njiti VN, Myers O, Schroeder D, Lightfoot DA (2003) Glyphosate on roundup ready soybean: effects on root infection by Fusarium solani f. sp. Glycines and sudden death syndrome. Agron J 95:1140–1145

    Article  CAS  Google Scholar 

  27. Njiti VN, Lightfoot DA (2006) Genetic analysis infers Dt loci underlie resistance to SDS caused by Fusarium virguliforme in indeterminate soybeans. Can J Plant Sci 41:83–89

    Article  Google Scholar 

  28. Afzal AJ, Srour A, Hemmati N, Saini N, Shemy E, Lightfoot DA (2012) Recombination suppression at the dominant Rhg1/Rfs2 locus underlying soybean resistance to the cyst nematode. Theor Appl Genet 124:1027–1039

    Article  PubMed  CAS  Google Scholar 

  29. Mansur LM, Orf JH, Chase K, Jarvick T, Cregan PB, Lark KG (1996) Genetic mapping of agronomic traits using recombinant inbred lines of soybean. Crop Sci 36:1327–1336

    Article  CAS  Google Scholar 

  30. Shoemaker RC, Specht JE (1995) Integration of the soybean molecular and classical genetic linkage groups. Crop Sci 35:436–446

    Article  CAS  Google Scholar 

  31. Akkaya MS, Bhagwat AA, Cregan PB (1992) Length polymorphism of simple sequence repeat DNA in soybean. Genetics 132:1131–1139

    PubMed  CAS  Google Scholar 

  32. Morgante M, Olivieri AM (1993) PCR-amplified microsatellites as markers in plant genetics. Plant J 3:175–182

    Article  PubMed  CAS  Google Scholar 

  33. Rongwen J, Akkaya MS, Bhagwat AA, Lavi U, Cregan PB (1995) The use of microsatellite DNA markers for soybean genotype identification. Theor Appl Genet 90:43–48

    Article  CAS  Google Scholar 

  34. Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S, Rafalski A (1996) The comparison of RFLP, RAPD, AFLP, and SSR (microsatellite) markers for germplasm analysis. Mol Breed 2:225–238

    Article  CAS  Google Scholar 

  35. Diwan N, Cregan PB (1997) Automated sizing of fluorescent-labeled simple sequence repeat (SSR) markers to assay genetic variation in soybean. Theor Appl Genet 95:723–733

    Article  CAS  Google Scholar 

  36. Marek LF, Mudge J, Darnielle L, Grant D, Hanson N, Paz M, Huihuang Y, Denny R, Larson K, Foster-Hartnett D, Cooper A, Danesh D, Larsen D, Schmidt T, Staggs R, Crow JA, Retzel E, Young ND, Shoemaker RC (2001) Soybean genomic survey: BAC-end sequences near RFLP and SSR markers. Genome 44:572–581

    Article  PubMed  CAS  Google Scholar 

  37. Akkaya MS, Shoemaker RC, Specht JE, Bhagwat AA, Cregan PB (1995) Integration of simple sequence repeat DNA markers into a soybean linkage map. Crop Sci 35:1439–1445

    Article  CAS  Google Scholar 

  38. Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL et al (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183

    Article  PubMed  CAS  Google Scholar 

  39. McCouch SR, Teytelman L, Xu Y, Lobos KB, Clare K, Walton M, Fu B, Maghirang R, Li Z, Xing Y, Zhang Q, Kono I, Yano M, Fjellstrom RJ, DeClerck G, Schneider D, Cartinhour S, Ware D, Stein L (2002) Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res 9:199–207

    Article  PubMed  CAS  Google Scholar 

  40. Rota ML, Kantety RV, Yu JK, Sorrells ME (2005) Nonrandom distribution and frequencies of genomic and EST-derived microsatellite markers in rice, wheat, and barley. BMC Genomics 6:23–32

    Article  PubMed  Google Scholar 

  41. Witsenboer H, Vogel J, Michelmore RW (1998) Identification, genetic localization and allelic diversity of selectively amplified microsatellite polymorphic loci (SAMPL) in lettuce and wild relatives (Lactuca spp.). Genome 40:923–936

    Article  Google Scholar 

  42. Cregan PB, Mudge J, Fickus EW, Danesh D, Denny R, Young ND (1999) Two simple sequence repeat markers to select for soybean cyst nematode resistance conditioned by the rhg1 locus. Theor Appl Genet 99:811–818

    Article  CAS  Google Scholar 

  43. Chen CH, Potter NT, Taranenko NT (2003) Detection of trinucleotide repeat containing genes by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. Methods Mol Biol 217:91–100

    PubMed  CAS  Google Scholar 

  44. Meksem K, Ruben E, Hyten D, Triwitayakorn K, Lightfoot DA (2001) Conversion of AFLP bands into high-throughput DNA markers. Mol Genet Genomics 265:207–214

    Article  PubMed  CAS  Google Scholar 

  45. Ruben E, Aziz J, Afzal AJ, Njiti VN, Triwitayakorn K, Iqbal MJ, Yaegashi S, Arelli P, Town C, Meksem K, Lightfoot DA (2006) Genomic analysis of the ‘Peking’ rhg1 locus: candidate genes that underlie soybean resistance to the cyst nematode. Mol Genet Genomics 276:320–330

    Article  Google Scholar 

  46. Meksem K, Doubler TW, Chang SJC, Chancharoenchai K, Suttner R, Cregan P, Rao-Arelli P, Gibson PT, Lightfoot DA (1999) Clustering among genes underlying QTL for field resistance to Sudden Death Syndrome and cyst nematode race 3. Theor Appl Genet 99:1131–1142

    Article  CAS  Google Scholar 

  47. Triwitayakorn K, Njiti VN, Iqbal MJ, Yaegashi S, Town C, Lightfoot DA (2005) Genomic analysis of a region encompassing QRfs1 and QRfs2: genes that underlie soybean resistance to sudden death syndrome. Genome 48:125–138

    Article  PubMed  CAS  Google Scholar 

  48. Meksem K, Hyten D, Ruben E, Lightfoot DA (2001) High-throughput genotyping for a polymorphism linked to soybean cyst nematode resistance gene Rhg4 by using Taqman probes. Mol Breed 77:63–71

    Article  Google Scholar 

  49. Srour A, Afzal AJ, Saini N, Blahut-Beatty L, Hemmati N, Simmonds DH, El Shemy H, Town CD, Sharma H, Liu X, Li W, Lightfoot DA (2012) The receptor like kinase transgene from the Rhg1/Rfs2 locus caused pleiotropic resistances to soybean cyst nematode and sudden death syndrome. BMC Genomics 13:368

    Article  PubMed  CAS  Google Scholar 

  50. Landegren U, Schallmeiner E, Nilsson M, Fredriksson S, Banr J, Gullberg M, Jarvius J, Gustafsdottir S, Dahl F, Sderberg O, Ericsson O, Stenberg J (2004) Molecular tools for a molecular medicine: analyzing genes, transcripts and proteins using padlock and proximity probes. J Mol Recognit 17:194–197

    Article  PubMed  CAS  Google Scholar 

  51. Mein CA, Barratt BJ, Dunn MG, Siegmund T, Smith AN, Esposito L, Nutland S, Stevens HE, Wilson AJ, Philips MS, Jarvis N, Law S, de Arruda M, Todd JA (2000) Evaluation of single nucleotide polymorphism typing with invader on PCR amplification and its automation. Genome Res 3:330–343

    Article  Google Scholar 

  52. Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA, Selker EU, Cresko WA, Johnson EA (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS One 3:e3376

    Article  PubMed  Google Scholar 

  53. Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6:e19379

    Article  PubMed  CAS  Google Scholar 

  54. Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM, Blaxter ML (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet 12:499–510

    Article  PubMed  CAS  Google Scholar 

  55. Truong HT, Ramos AM, Yalcin F, de Ruiter M, van der Poel HJA, Huvenaars KHJ, Hogers RCJ, van Enckevort LJG, Janssen A, van Orsouw NJ, van Eijk MJT (2012) Sequence-based genotyping for marker discovery and co615 dominant scoring in germplasm and populations. PLoS One 7:e37565

    Article  PubMed  CAS  Google Scholar 

  56. Poland JA, Brown PJ, Sorrells ME, Jannink JL (2012) Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS One 7:e32253

    Article  PubMed  CAS  Google Scholar 

  57. Wang S, Meyer E, McKay JK, Matz MV (2012) 2b-RAD: a simple and flexible method for genome-wide genotyping. Nat Methods 9:808–810

    Article  PubMed  CAS  Google Scholar 

  58. Mardis ER (2008) The impact of next-generation sequencing technology on genetics. Trends Genet 24:133–141

    Article  PubMed  CAS  Google Scholar 

  59. Futschik A, Schltterer C (2010) The next generation of molecular markers from massively parallel sequencing of pooled DNA samples. Genetics 186:207–218

    Article  PubMed  CAS  Google Scholar 

  60. You FM, Huo N, Deal KR, Gu YQ, Luo M-C, McGuire PE, Dvorak J, Anderson OD (2011) Annotation-based genome-wide SNP discovery in the large and complex Aegilops tauschii genome using next-generation s 639 sequencing without a reference genome sequence. BMC Genomics 12:59

    Article  PubMed  CAS  Google Scholar 

  61. Nielsen R, Paul JS, Albrechtsen A, Song YS (2011) Genotype and SNP calling from next-generation sequencing data. Nat Rev Genet 12:443–451

    Article  PubMed  CAS  Google Scholar 

  62. Xu X, Pan S, Cheng S, Zhang B, Mu D et al (2011) Genome sequence and analysis of the tuber crop potato. Nature 475:189–195

    Article  PubMed  CAS  Google Scholar 

  63. Wang X, Wang H, Wang J, Sun R, Wu J et al (2011) The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 43:1035–1039

    Article  PubMed  CAS  Google Scholar 

  64. Lander E, Green P, Abrahamson J, Barlow A, Daley M, Lincoln S, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  PubMed  CAS  Google Scholar 

  65. Basten CJ, Weir BS, Zeng Z (2001) QTL cartographer version 2.0. Department of Statistics, North Carolina State University, Raleigh, NC

    Google Scholar 

  66. Hartwig EE, Epps JM (1973) Registration of forest soybeans. Crop Sci 13:287

    Article  Google Scholar 

  67. Tanksley SD, Young ND, Paterson AH, Bonierbale MW (1989) RFLP mapping in plant breeding: new tools for an old science. Bio-technology 7:257–264

    Article  CAS  Google Scholar 

  68. Frisch M, Bohn M, Melchinger AE (1999) Comparison of selection strategies for marker-assisted backcrossing of a gene. Crop Sci 39:1295–1301

    Article  Google Scholar 

  69. Iqbal MJ, Meksem K, Njiti VN, Kassem MA, Lightfoot DA (2001) Microsatellite markers identify three additional quantitative trait loci for resistance to soybean sudden death syndrome (SDS) in Essex  ×  Forrest RILs. Theor Appl Genet 102:187–192

    Article  CAS  Google Scholar 

  70. Yuan Z, Njiti VN, Meksem K, Iqbal MJ, Triwitayakorn K, Kassem MA, Davis GT, Schmidt ME, Lightfoot DA (2002) Identification of yield loci in soybean populations that segregate for disease resistance. Crop Sci 42:271–277

    Article  PubMed  CAS  Google Scholar 

  71. Kazi S, Shultz J, Bashir R, Afzal J, Njiti VN, Lightfoot DA (2008) Separate loci underlie resistance to soybean sudden death syndrome in ‘Hartwig’ by ‘Flyer’. Theor Appl Genet 116:967–977

    Article  PubMed  CAS  Google Scholar 

  72. Kazi S, Shultz J, Afzal J, Hashmi R, Jasim M, Bond J, Arelli PR, Lightfoot DA (2010) Iso-lines and inbred-lines confirmed loci that underlie resistance from cultivar ‘Hartwig’ to three soybean cyst nematode populations. Theor Appl Genet 120:633–640

    Article  PubMed  Google Scholar 

  73. Karangula UB, Kassem MA, Gupta L, El-Shemy HA, Lightfoot DA (2009) Locus interactions underlie seed yield in soybeans resistant to Heterodera glycines. Curr Issues Mol Biol 11(suppl 1):i73–i84

    PubMed  Google Scholar 

  74. Njiti VN, Gray L, Lightfoot DA (1997) Rate-reducing resistance to Fusarium solani f. sp. phaseoli (nee: glycines) underlies field resistance to soybean sudden-death syndrome (SDS). Crop Sci 37:1–12

    Article  Google Scholar 

  75. Njiti VN, Meksem K, Iqbal MJ, Johnson JE, Kassem MA, Zobrist KF, Kilo VY, Lightfoot DA (2002) Common loci underlie field resistance to soybean sudden death syndrome in Forrest, Pyramid, Essex, and Douglas. Theor Appl Genet 104:294–300

    Article  PubMed  CAS  Google Scholar 

  76. Liu X, Liu S, Jamai A, Bendahmane A, Lightfoot DA, Mitchum MG, Meksem K (2011) Soybean cyst nematode resistance in soybean is independent of the Rhg4 locus LRR RLK gene. Funct Integr Genomics. doi:10.1007/s10142-011-0225-4

  77. Mudge J, Cregan PB, Kenworthy JP, Kenworthy WJ, Orf JH, Young ND (1997) Two microsatellite markers that flank the major soybean cyst nematode resistance locus. Crop Sci 37:1611–1615

    Article  CAS  Google Scholar 

  78. Iqbal MJ, Yaegashi S, Njiti VN, Ahsan R, Cryder KL, Lightfoot DA (2002) Resistance locus pyramids alter transcript abundance in soybean roots inoculated with Fusarium solani f. sp. glycines. Mol Genet Genomics 268:407–417

    Article  PubMed  CAS  Google Scholar 

  79. Iqbal MJ, Afzal AJ, Yaegashi S, Ruben E, Triwitayakorn K, Njiti VN, Ahsan R, Wood AJ, Lightfoot DA (2002) A pyramid of loci for partial resistance to Fusarium solani f. sp. glycines maintains myo-inositol-1-phoshate synthase expression in soybean roots. Theor Appl Genet 105:1115–1123

    Article  PubMed  CAS  Google Scholar 

  80. Iqbal MJ, Yaegashi S, Ahsan R, Shopinski KL, Lightfoot DA (2005) Root response to Fusarium solani f. sp. glycines: temporal accumulation of transcripts in partially resistant and susceptible soybean. Theor Appl Genet 110:1429–1438

    Article  PubMed  CAS  Google Scholar 

  81. Aoki T, O’Donnell K, Homma Y, Lattanzi AR (2003) Sudden-death syndrome of soybean is caused by two morphologically and phylogenetically distinct species within the Fusarium solani species complex F. virguliforme in North America and F. tucumaniae in South America. Mycologia 95:660–684

    Article  PubMed  Google Scholar 

  82. Xin Z, Velten JP, Oliver MJ, Burke JJ (2003) High-throughput DNA extraction method suitable for PCR. Biotechniques 34:820–826

    PubMed  CAS  Google Scholar 

  83. Yuan J, Haroon M, Lightfoot DA, Pelletier Y, Liu Q, Bizimungu B, Li XQ (2009) High-resolution DNA melting analysis of allelic expression. Curr Issues Mol Biol 11(S1):1–9

    Google Scholar 

  84. Landegren U, Nilsson M, Kwok PW (1998) Reading bits of genetic information: methods for single nucleotide polymorphism analysis. Genome Res 8:769–776

    PubMed  CAS  Google Scholar 

  85. Kazi S (2005) Minimum tile derive microsatellite markers improve the physical map of the soybean genome and the Flyer by Hartwig genetic map at Rhg, Rfs and yield loci. MS Thesis SIUC Carbondale IL, USA, pp 212

    PubMed  CAS  Google Scholar 

  86. Hashmi RY (2004) Inheritance of resistance to soybean sudden death syndrome (SDS) in Ripley x Spencer F5 derived lines. PhD dissertation, Plant Biology, SIUC, Carbondale, USA

    PubMed  CAS  Google Scholar 

  87. Chang SJC, Doubler TW, Kilo V, Suttner RJ, Klein JH, Schmidt ME, Gibson PT and Lightfoot DA (1996) Two additional loci underlying durable field resistance to soybean sudden-death syndrome (SDS). Crop Sci 36:1624–1628

    PubMed  CAS  Google Scholar 

  88. Sanithchon J, Vanavichit A, Chanprame S, Toojinda T, Triwitayakorn T, Njiti, VM, SrinivesP (2004) Identification of simple sequence repeat markers linked to sudden death syndrome resistance in soybean. Science Asia 30:205–209

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Lightfoot, D.A., Iqbal, M.J. (2013). Molecular Mapping and Breeding with Microsatellite Markers. In: Kantartzi, S. (eds) Microsatellites. Methods in Molecular Biology, vol 1006. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-389-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-389-3_20

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-388-6

  • Online ISBN: 978-1-62703-389-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics