Skip to main content

Systems Proteomics of Healthy and Diseased Chromatin

  • Protocol
  • First Online:
Book cover Heart Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1005))

Abstract

Differences in chromatin-associated proteins allow the same genome to participate in multiple cell types and to respond to an array of stimuli in any given cell. To understand the fundamental properties of chromatin and to reveal its cell- and/or stimulus-specific behaviors, quantitative proteomics is an essential technology. This chapter details the methods for fractionation and quantitative mass spectrometric analysis of chromatin from hearts or isolated adult myocytes, detailing some of the considerations for applications to understanding heart disease. The state-of-the-art methodology for data interpretation and integration through bioinformatics is reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Franklin S et al (2011) Specialized compartments of cardiac nuclei exhibit distinct proteomic anatomy. Mol Cell Proteomics 10:703

    Google Scholar 

  2. Franklin S et al (2012) Quantitative analysis of chromatin proteome reveals remodeling principles and identifies HMGB2 as a regulator of hypertrophic growth. Mol Cell Proteomics, 11: M111.014258

    Google Scholar 

  3. Lieberman-Aiden E et al (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326:289–293

    Article  PubMed  CAS  Google Scholar 

  4. van Steensel B, Dekker J (2010) Genomics tools for unraveling chromosome architecture. Nat Biotechnol 28:1089–1095

    Article  PubMed  Google Scholar 

  5. Kornberg RD (1974) Chromatin structure: a repeating unit of histones and DNA. Science 184:868–871

    Article  PubMed  CAS  Google Scholar 

  6. Zhang Z, Pugh BF (2011) High-resolution genome-wide mapping of the primary structure of chromatin. Cell 144:175–186

    Article  PubMed  CAS  Google Scholar 

  7. Rada-Iglesias A et al (2010) A unique chromatin signature uncovers early developmental enhancers in humans. Nature 470:279–283

    Article  PubMed  Google Scholar 

  8. Barski A et al (2007) High-resolution profiling of histone methylations in the human genome. Cell 129:823–837

    Article  PubMed  CAS  Google Scholar 

  9. Cuddapah S et al (2011) Genomic profiling of HMGN1 reveals an association with chromatin at regulatory regions. Mol Cell Biol 31:700–709

    Article  PubMed  CAS  Google Scholar 

  10. Schones DE, Zhao K (2008) Genome-wide approaches to studying chromatin modifications. Nat Rev Genet 9:179–191

    Article  PubMed  CAS  Google Scholar 

  11. Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705

    Article  PubMed  CAS  Google Scholar 

  12. Schreiber SL, Bernstein BE (2002) Signaling network model of chromatin. Cell 111:771–778

    Article  PubMed  CAS  Google Scholar 

  13. Matouk CC, Marsden PA (2008) Epigenetic regulation of vascular endothelial gene expression. Circ Res 102:873–887

    Article  PubMed  CAS  Google Scholar 

  14. Ho L, Crabtree GR (2010) Chromatin remodeling during development. Nature 463:474–484

    Article  PubMed  CAS  Google Scholar 

  15. Haberland M, Montgomery RL, Olson EN (2009) The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet 10:32–42

    Article  PubMed  CAS  Google Scholar 

  16. Narlikar GJ, Fan HY, Kingston RE (2002) Cooperation between complexes that regulate chromatin structure and transcription. Cell 108:475–487

    Article  PubMed  CAS  Google Scholar 

  17. Bai L, Santangelo TJ, Wang MD (2006) Single-molecule analysis of RNA polymerase transcription. Annu Rev Biophys Biomol Struct 35:343–360

    Article  PubMed  CAS  Google Scholar 

  18. Cairns BR (2009) The logic of chromatin architecture and remodelling at promoters. Nature 461:193–198

    Article  PubMed  CAS  Google Scholar 

  19. Heineke J, Molkentin JD (2006) Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat Rev Mol Cell Biol 7:589–600

    Article  PubMed  CAS  Google Scholar 

  20. Rajabi M, Kassiotis C, Razeghi P, Taegtmeyer H (2007) Return to the fetal gene program protects the stressed heart: a strong hypothesis. Heart Fail Rev 12:331–343

    Article  PubMed  CAS  Google Scholar 

  21. Razeghi P et al (2001) Metabolic gene expression in fetal and failing human heart. Circulation 104:2923–2931

    Article  PubMed  CAS  Google Scholar 

  22. Louch WE, Sheehan KA, Wolska BM (2011) Methods in cardiomyocytes isolation, culture, and gene transfer. J Mol Cell Cardiol 51:288–298

    Article  PubMed  CAS  Google Scholar 

  23. Schluter KD, Schreiber D (2005) Adult ventricular cardiomyocytes: isolation and culture. Methods Mol Biol 290:305–314

    PubMed  Google Scholar 

  24. O’Connell TD, Rodrigo MC, Simpson PC (2007) Isolation and culture of adult mouse cardiac myocytes. Methods Mol Biol 357:271–296

    PubMed  Google Scholar 

  25. Nesvizhskii AI, Vitek O, Aebersold R (2007) Analysis and validation of proteomic data generated by tandem mass spectrometry. Nat Methods 4:787–797

    Article  PubMed  CAS  Google Scholar 

  26. Park SK, Venable JD, Xu T, Yates JR 3rd (2008) A quantitative analysis software tool for mass spectrometry-based proteomics. Nat Methods 5:319–322

    PubMed  CAS  Google Scholar 

  27. Lomenick B et al (2009) Target identification using drug affinity responsive target stability (DARTS). Proc Natl Acad Sci USA 106:21984–21989

    Article  PubMed  CAS  Google Scholar 

  28. Kamleh A et al (2008) Metabolomic profiling using Orbitrap Fourier transform mass spectrometry with hydrophilic interaction chromatography: a method with wide applicability to analysis of biomolecules. Rapid Commun Mass Spectrom 22:1912–1918

    Article  PubMed  CAS  Google Scholar 

  29. Searle BC (2010) Scaffold: a bioinformatic tool for validating MS/MS-based proteomic studies. Proteomics 10:1265–1269

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The Vondriska lab is supported by grants from the National Heart, Lung, and Blood Institute of the NIH and the Laubisch Endowment at UCLA. EM is recipient of the Jennifer S. Buchwald Graduate Fellowship in Physiology at UCLA, HC is the recipient of an American Heart Association Pre-doctoral Fellowship, and SF is the recipient of an NIH K99 Award.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Chen, H., Monte, E., Vondriska, T.M., Franklin, S. (2013). Systems Proteomics of Healthy and Diseased Chromatin. In: Vivanco, F. (eds) Heart Proteomics. Methods in Molecular Biology, vol 1005. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-386-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-386-2_7

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-385-5

  • Online ISBN: 978-1-62703-386-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics