Skip to main content

Detection of O-GlcNAc Modifications on Cardiac Myofilament Proteins

  • Protocol
  • First Online:
Heart Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1005))

Abstract

In this chapter it is described a general method that has been used successfully by more than one laboratory interested in detecting O-GlcNAc in myofilament proteins. Alternative reagents for chemo-enzymatic or metabolic labeling will be indicated, as well as references for more details in alternative methods. The outline is divided into (1) Enrichment of O-GlcNAc Stoichiometry, (2) Cardiac Myofilament Protein Isolation, (3) SDS-PAGE, (4) “Reduction and Alkylation,” (5) In-Gel Protein Digestion, (6) Chemo-enzymatic Labeling of O-GlcNAc Moieties (Click Chemistry), (7) Biotin Alkyne Tagging, (8) Strong Cation Exchange (SCX) and Streptavidin, and (9) β-Elimination and Michael Addition (BEMAD) for O-GlcNAc Site-Mapping.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hart GW, Housley MP, Slawson C (2007) Cycling of O-linked beta-N-acetylglucosamine on nucleocytoplasmic proteins. Nature 446:1017–1022

    Article  PubMed  CAS  Google Scholar 

  2. Hart GW, Slawson C, Ramirez Correa GA, Lagerlof O (2011) Cross talk between O-GlcNAcylation and phosphorylation: roles in signaling, transcription, and chronic disease. Annu Rev Biochem 80:825–858

    Article  PubMed  CAS  Google Scholar 

  3. Zachara NE (2012) The roles of O-linked β-N-acetylglucosamine in cardiovascular physiology and disease. Am J Physiol Heart Circ Physiol 302:1905–1918

    Article  Google Scholar 

  4. Rao FV, Dorfmueller HC, Villa F, Allwood M, Eggleston IM, van Aalten DM (2006) Structural insights into the mechanism and inhibition of eukaryotic O-GlcNAc hydrolysis. EMBO J 25:1569–1578

    Article  PubMed  CAS  Google Scholar 

  5. Torres CR, Hart GW (1984) Topography and polypeptide distribution of terminal N-acetylglucosamine residues on the surfaces of intact lymphocytes. Evidence for O-linked GlcNAc. J Biol Chem 259:3308–3317

    PubMed  CAS  Google Scholar 

  6. Greis KD, Hart GW (1998) Analytical methods for the study of O-GlcNAc glycoproteins and glycopeptides. Methods Mol Biol 76:19–33

    PubMed  CAS  Google Scholar 

  7. Hang HC, Bertozzi CR (2001) Ketone isosteres of 2-N-acetamidosugars as substrates for metabolic cell surface engineering. J Am Chem Soc 123:1242–1243

    Article  PubMed  CAS  Google Scholar 

  8. Khidekel N, Arndt S, Lamarre-Vincent N, Lippert A, Poulin-Kerstien KG, Ramakrishnan B et al (2003) A chemoenzymatic approach toward the rapid and sensitive detection of O-GlcNAc posttranslational modifications. J Am Chem Soc 125:16162–16163

    Article  PubMed  CAS  Google Scholar 

  9. Roquemore EP, Chou TY, Hart GW (1994) Detection of O-linked N-acetylglucosamine (O-GlcNAc) on cytoplasmic and nuclear proteins. Methods Enzymol 230:443–460

    Article  PubMed  CAS  Google Scholar 

  10. Vocadlo DJ, Hang HC, Kim EJ, Hanover JA, Bertozzi CR (2003) A chemical approach for identifying O-GlcNAc-modified proteins in cells. Proc Natl Acad Sci USA 100:9116–9121

    Article  PubMed  CAS  Google Scholar 

  11. Wang Z, Pandey A, Hart GW (2007) Dynamic interplay between O-linked N-acetylglucosaminylation and glycogen synthase kinase-3-dependent phosphorylation. Mol Cell Proteomics 6:1365–1379

    Article  PubMed  CAS  Google Scholar 

  12. Wells L, Vosseller K, Cole RN, Cronshaw JM, Matunis MJ, Hart GW (2002) Mapping sites of O-GlcNAc modification using affinity tags for serine and threonine post-translational modifications. Mol Cell Proteomics 1:791–804

    Article  PubMed  CAS  Google Scholar 

  13. Zachara NE, Cheung WD, Hart GW (2004) Nucleocytoplasmic glycosylation, O-GlcNAc: identification and site mapping. Methods Mol Biol 284:175–194

    PubMed  CAS  Google Scholar 

  14. Rexach JE, Clark PM, Hsieh-Wilson LC (2008) Chemical approaches to understanding O-GlcNAc glycosylation in the brain. Nat Chem Biol 4:97–106

    Article  PubMed  CAS  Google Scholar 

  15. Hedou J, Bastide B, Page A, Michalski JC, Morelle W (2009) Mapping of O-linked beta-N-acetylglucosamine modification sites in key contractile proteins of rat skeletal muscle. Proteomics 9:2139–2148

    Article  PubMed  CAS  Google Scholar 

  16. Ramirez-Correa GA, Jin W, Wang Z, Zhong X, Gao WD, Dias WB et al (2008) O-linked GlcNAc modification of cardiac myofilament proteins: a novel regulator of myocardial contractile function. Circ Res 103:1354–1358

    Article  PubMed  CAS  Google Scholar 

  17. Whitworth GE, Macauley MS, Stubbs KA, Dennis RJ, Taylor EJ, Davies GJ, Greig IR, Vocadlo DJ (2007) Analysis of PUGNAc and NAG-thiazoline as transition state analogues for human O-GlcNAcase: mechanistic and structural insights into inhibitor selectivity and transition state poise. J Am Chem Soc 129:635–644

    Article  PubMed  CAS  Google Scholar 

  18. Yuzwa SA, Macauley MS, Heinonen JE, Shan X, Dennis RJ, He Y et al (2008) A potent mechanism-inspired O-GlcNAcase inhibitor that blocks phosphorylation of tau in vivo. Nat Chem Biol 4:483–490

    Article  PubMed  CAS  Google Scholar 

  19. Greis KD, Hayes BK, Comer FI, Kirk M, Barnes S, Lowary TL, Hart GW (1996) Selective detection and site-analysis of O-GlcNAc-modified glycopeptides by beta-elimination and tandem electrospray mass spectrometry. Anal Biochem 234:38–49

    Article  PubMed  CAS  Google Scholar 

  20. Yuan C, Guo Y, Ravi R, Przyklenk K, Shilkofski N, Diez R, Cole RN, Murphy AM (2006) Myosin binding protein C is differentially phosphorylated upon myocardial stunning in canine and rat hearts—evidence for novel phosphorylation sites. Proteomics 6:4176–4186

    Article  PubMed  CAS  Google Scholar 

  21. Whelan SA, Hart GW (2006) Identification of O-GlcNAc sites on proteins. Methods Enzymol 415:113–133

    Article  PubMed  CAS  Google Scholar 

  22. Shevchenko A, Tomas H, Havlis J, Olsen JV, Mann M (2006) In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc 1:2856–2860

    Article  PubMed  CAS  Google Scholar 

  23. Khidekel N, Ficarro SB, Peters EC, Hsieh-Wilson LC (2004) Exploring the O-GlcNAc proteome: direct identification of O-GlcNAc-modified proteins from the brain. Proc Natl Acad Sci USA 101:13132–13137

    Article  PubMed  CAS  Google Scholar 

  24. Murphy AM, Solaro RJ (1990) Developmental difference in the stimulation of cardiac myofibrillar Mg2(+)-ATPase activity by calmidazolium. Pediatr Res 28:46–49

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ramirez-Correa, G.A., Ferrando, I.M., Hart, G., Murphy, A. (2013). Detection of O-GlcNAc Modifications on Cardiac Myofilament Proteins. In: Vivanco, F. (eds) Heart Proteomics. Methods in Molecular Biology, vol 1005. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-386-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-386-2_13

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-385-5

  • Online ISBN: 978-1-62703-386-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics