Skip to main content
Book cover

Necrosis pp 67–73Cite as

Analysis of Pyroptosis in Bacterial Infection

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1004))

Abstract

Eukaryotic cells undergo death by several different mechanisms: apoptosis, a cell death that prevents inflammatory response; necrosis, when the cell membrane lyses and all the intracellular content is spilled outside; and pyroptosis, a cell death that is accompanied by the release of inflammatory cytokines by the dying cells. Pyroptosis is designed to attract a nonspecific innate response to the site of infection or tumor. In this chapter, we describe the methods used to study pyroptosis in a mammalian cell. The model organism used is Mycobacterium tuberculosis, which suppresses pyroptosis by macrophages, and possibly in dendritic cells.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Bergsbaken T, Fink SL, Cookson BT (2009) Pyroptosis: host cell death and inflammation. Nat Rev Microbiol 7(2):99–109. doi:nrmicro2070 [pii], 10.1038/nrmicro2070

    Article  CAS  Google Scholar 

  2. Miao EA, Leaf IA, Treuting PM, Mao DP, Dors M, Sarkar A, Warren SE, Wewers MD, Aderem A (2010) Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria. Nat Immunol 11(12):1136–1142. doi:ni.1960 [pii], 10.1038/ni.1960

    Article  CAS  Google Scholar 

  3. Fink SL, Cookson BT (2005) Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infect Immun 73(4):1907–1916. doi:73/4/1907 [pii], 10.1128/IAI.73.4.1907-1916.2005

    Article  CAS  Google Scholar 

  4. Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke EH, Blagosklonny MV, El-Deiry WS, Golstein P, Green DR, Hengartner M, Knight RA, Kumar S, Lipton SA, Malorni W, Nunez G, Peter ME, Tschopp J, Yuan J, Piacentini M, Zhivotovsky B, Melino G (2009) Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ 16(1):3–11. doi:cdd2008150 [pii], 10.1038/cdd.2008.150

    Article  CAS  Google Scholar 

  5. Monack DM, Mecsas J, Bouley D, Falkow S (1998) Yersinia-induced apoptosis in vivo aids in the establishment of a systemic infection of mice. J Exp Med 188(11):2127–2137

    Article  CAS  Google Scholar 

  6. Behar SM, Divangahi M, Remold HG (2010) Evasion of innate immunity by mycobacterium tuberculosis: is death an exit strategy? Nat Rev Microbiol 8(9):668–674. doi:nrmicro2387 [pii], 10.1038/nrmicro2387

    Article  CAS  Google Scholar 

  7. Mariathasan S, Newton K, Monack DM, Vucic D, French DM, Lee WP, Roose-Girma M, Erickson S, Dixit VM (2004) Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature 430(6996):213–218. doi:10.1038/nature02664, nature02664 [pii]

    Article  CAS  Google Scholar 

  8. Haimovich B, Venkatesan MM (2006) Shigella and Salmonella: death as a means of survival. Microbes Infect 8(2):568–577. doi:S1286-4579(05)00297-2 [pii], 10.1016/j.micinf.2005.08.002

    Article  CAS  Google Scholar 

  9. Bergsbaken T, Cookson BT (2007) Macrophage activation redirects yersinia-infected host cell death from apoptosis to caspase-1-dependent pyroptosis. PLoS Pathog 3(11):e161. doi:07-PLPA-RA-0189 [pii], 10.1371/journal.ppat.0030161

    Article  Google Scholar 

  10. Danelishvili L, Yamazaki Y, Selker J, Bermudez LE (2010) Secreted mycobacterium tuberculosis Rv3654c and Rv3655c proteins participate in the suppression of macrophage apoptosis. PLoS One 5(5):e10474. doi:10.1371/journal.pone.0010474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Danelishvili L, McGarvey J, Li YJ, Bermudez LE (2003) Mycobacterium tuberculosis infection causes different levels of apoptosis and necrosis in human macrophages and alveolar epithelial cells. Cell Microbiol 5(9):649–660

    Article  CAS  Google Scholar 

  12. Danelishvili L, Everman JL, McNamara MJ, Bermudez LE (2011) Inhibition of the plasma-membrane-associated serine protease cathepsin G by mycobacterium tuberculosis Rv3364c suppresses caspase-1 and pyroptosis in macrophages. Front Microbiol 2:281. doi:10.3389/fmicb.2011.00281

    Article  PubMed  Google Scholar 

  13. Duan L, Gan H, Arm J, Remold HG (2001) Cytosolic phospholipase A2 participates with TNF-alpha in the induction of apoptosis of human macrophages infected with Mycobacterium tuberculosis H37Ra. J Immunol 166(12):7469–7476

    Article  CAS  Google Scholar 

  14. Chen M, Gan H, Remold HG (2006) A mechanism of virulence: virulent mycobacterium tuberculosis strain H37Rv, but not attenuated H37Ra, causes significant mitochondrial inner membrane disruption in macrophages leading to necrosis. J Immunol 176(6):3707–3716. doi:176/6/3707 [pii]

    Article  CAS  Google Scholar 

  15. van der Wel N, Hava D, Houben D, Fluitsma D, van Zon M, Pierson J, Brenner M, Peters PJ (2007) M. tuberculosis and M. leprae translocate from the phagolysosome to the cytosol in myeloid cells. Cell 129(7):1287–1298. doi:S0092-8674(07)00782-9 [pii], 10.1016/j.cell.2007.05.059

    Article  Google Scholar 

  16. Rich EA, Torres M, Sada E, Finegan CK, Hamilton BD, Toossi Z (1997) Mycobacterium tuberculosis (MTB)-stimulated production of nitric oxide by human alveolar macrophages and relationship of nitric oxide production to growth inhibition of MTB. Tuber Lung Dis 78(5–6):247–255. doi:S0962-8479(97)90005-8 [pii]

    Article  CAS  Google Scholar 

  17. Pieters J (2008) Mycobacterium tuberculosis and the macrophage: maintaining a balance. Cell Host Microbe 3(6):399–407. doi:S1931-3128(08)00154-6 [pii], 10.1016/j.chom.2008.05.006

    Article  CAS  Google Scholar 

  18. Fratti RA, Chua J, Vergne I, Deretic V (2003) Mycobacterium tuberculosis glycosylated phosphatidylinositol causes phagosome maturation arrest. Proc Natl Acad Sci U S A 100(9):5437–5442. doi:10.1073/pnas.0737613100, 0737613100 [pii]

    Article  CAS  Google Scholar 

  19. Miao EA, Andersen-Nissen E, Warren SE, Aderem A (2007) TLR5 and Ipaf: dual sensors of bacterial flagellin in the innate immune system. Semin Immunopathol 29(3):275–288. doi:10.1007/s00281-007-0078-z

    Article  CAS  Google Scholar 

  20. Dinarello CA (2009) Immunological and inflammatory functions of the interleukin-1 family. Annu Rev Immunol 27:519–550. doi:10.1146/annurev.immunol.021908.132612

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Danelishvili, L., Bermudez, L.E. (2013). Analysis of Pyroptosis in Bacterial Infection. In: McCall, K., Klein, C. (eds) Necrosis. Methods in Molecular Biology, vol 1004. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-383-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-383-1_6

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-382-4

  • Online ISBN: 978-1-62703-383-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics