Skip to main content

Functional Assay of Mammalian and Insect Olfactory Receptors Using Xenopus Oocytes

  • Protocol
  • First Online:
Olfactory Receptors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1003))

Abstract

The large number of olfactory receptors (ORs) expressed by various mammalian and insect species, as well as the large number of potential odorant ligands, has made the pairing of odorants with receptors ­(de-orphaning) exceedingly difficult. These efforts are further complicated by difficulties in expressing ORs in many standard expression systems. Xenopus laevis oocytes offer a versatile expression platform for the de-orphaning and functional characterization of ORs. Two-electrode voltage clamp electrophysiology is a common and relatively straightforward approach to the functional assay of receptors expressed in Xenopus oocytes, and this technique has been discussed extensively in the literature. However, laboratories that are new to the use of Xenopus oocytes are often stymied by some of the peculiarities of the Xenopus oocyte expression system. We discuss some of the key methodological issues in Xenopus care, oocyte ­isolation and receptor expression, with a focus on using this expression system to study the ORs of mammals and insects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mombaerts P (2004) Genes and ligands for odorant, vomeronasal and taste receptors. Nat Rev Neurosci 5:263–278

    Article  PubMed  CAS  Google Scholar 

  2. McClintock TS, Sammeta N (2003) Trafficking prerogatives of olfactory receptors. Neuroreport 14:1547–1552

    Article  PubMed  CAS  Google Scholar 

  3. Lu M, Staszewski L, Echeverri F, Xu H, Moyer BD (2004) Endoplasmic reticulum degradation impedes olfactory G-protein coupled receptor functional expression. BMC Cell Biol 5:34

    Article  PubMed  Google Scholar 

  4. Abaffy T, Matsunami H, Luetje CW (2006) Functional analysis of a mammalian odorant receptor subfamily. J Neurochem 97: 1506–1518

    Article  PubMed  CAS  Google Scholar 

  5. Hsiao B, Mihalak KB, Repicky SE, Everhart D, Mederos A, Malhotra A, Luetje CW (2006) Determinants of zinc potentiation on the α4 subunit of neuronal nicotinic receptors. Mol Pharmacol 69:27–36

    PubMed  CAS  Google Scholar 

  6. Mihalak KB, Carroll FI, Luetje CW (2006) Varenicline is a partial agonist at α4β2 and a full agonist at α7 neuronal nicotinic receptors. Mol Pharmacol 70:801–805

    Article  PubMed  CAS  Google Scholar 

  7. Abaffy T, Malhotra A, Luetje CW (2007) The molecular basis for ligand specificity in a mouse olfactory receptor: a network of functionally important residues. J Biol Chem 282: 1216–1224

    Article  PubMed  CAS  Google Scholar 

  8. Hsiao B, Mihalak KB, Magleby KL, Luetje CW (2008) Zinc potentiates neuronal nicotinic receptors by increasing burst duration. J Neurophysiol 99:999–1007

    Article  PubMed  CAS  Google Scholar 

  9. Papke RL, Smith-Maxwell C (2009) High-throughput electrophysiology with Xenopus oocytes. Comb Chem High Throughput Screen 12:38–50

    Article  PubMed  CAS  Google Scholar 

  10. Sherman-Gold R (ed) (2008) The Axon guide a guide to electrophysiology & biophysics laboratory techniques, 3rd edn. MDS Analytical Technologies, Sunnyvale, CA

    Google Scholar 

  11. Liman ER, Tytgat J, Hess P (1992) Subunit stoichiometry of a mammalian K  +  channel determined by construction of multimeric cDNAs. Neuron 9:861–871

    Article  PubMed  CAS  Google Scholar 

  12. Krautwurst D, Yau KW, Reed RR (1998) Identification of ligands for olfactory receptors by functional expression of a receptor library. Cell 95:917–926

    Article  PubMed  CAS  Google Scholar 

  13. Saito H, Kubota M, Roberts RW, Chi Q, Matsunami H (2004) RTP family members induce functional expression of mammalian odorant receptors. Cell 119:679–691

    Article  PubMed  CAS  Google Scholar 

  14. Uezono Y, Bradley J, Min C, McCarty NA, Quick M, Riordan JR, Chavkin C, Zinn K, Lester HA, Davidson N (1993) Receptors that couple to 2 classes of G proteins increase cAMP and activate CFTR expressed in Xenopus oocytes. Receptors Channels 1: 233–241

    PubMed  CAS  Google Scholar 

  15. Kajiya K, Inaki K, Tanaka M, Haga T, Kataoka H, Touhara K (2001) Molecular bases of odor discrimination: reconstitution of olfactory receptors that recognize overlapping sets of odorants. J Neurosci 21:6018–6025

    PubMed  CAS  Google Scholar 

  16. Sato K, Pellegrino M, Nakagawa T, Nakagawa T, Vosshall LB, Touhara K (2008) Insect olfactory receptors are heteromeric ligand-gated ion channels. Nature 452:1002–1006

    Article  PubMed  CAS  Google Scholar 

  17. Wicher D, Schafer R, Bauernfeind R, Stensmyr MC, Heller R, Heinemann SH, Hansson BS (2008) Drosophila odorant receptors are both ligand-gated and cyclic-nucleotide-activated cation channels. Nature 452:1007–1011

    Article  PubMed  CAS  Google Scholar 

  18. Hallem EA, Ho MG, Carlson JR (2004) The molecular basis of odor coding in the Drosophila antenna. Cell 117:965–979

    Article  PubMed  CAS  Google Scholar 

  19. Wanner KW, Nichols AS, Walden KKO, Brockmann A, Luetje CW, Robertson HM (2007) A honeybee odorant receptor for the queen substance 9-oxo-2-decenoic acid. Proc Natl Acad Sci U S A 104:14383–14388

    Article  PubMed  CAS  Google Scholar 

  20. Ma T, Vetrivel L, Yang H, Pedemonte N, Zegarra-Moran O, Galietta LJ, Verkman AS (2002) High-affinity activators of cystic fibrosis transmembrane conductance regulator (CFTR) chloride conductance identified by high-throughput screening. J Biol Chem 277: 37235–37241

    Article  PubMed  CAS  Google Scholar 

  21. Vosshall LB, Hansson BS (2011) A unified nomenclature system for the insect olfactory co-receptor. Chem Senses 36(6):497–498, Flybase, FBrf0212857

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Luetje, C.W., Nichols, A.S., Castro, A., Sherman, B.L. (2013). Functional Assay of Mammalian and Insect Olfactory Receptors Using Xenopus Oocytes. In: Crasto, C. (eds) Olfactory Receptors. Methods in Molecular Biology, vol 1003. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-377-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-377-0_14

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-376-3

  • Online ISBN: 978-1-62703-377-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics