Advertisement

Chimerism Analysis Following Hematopoietic Stem Cell Transplantation

  • Kathleen M. Murphy
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 999)

Abstract

Allogeneic hematopoietic stem cell transplantation (HSCT) is an effective therapeutic approach for several hematological diseases. Chimerism studies can be helpful to assess donor engraftment, detect early signs of graft rejection, and monitor minimal residual disease. Currently the most common method for monitoring chimerism following HSCT is by PCR amplification of STR loci followed by capillary electrophoresis. Prior to transplantation, multiple STR loci in both the donor and recipient are analyzed in order to identify loci that differentiate the two individuals. Informative loci are selected to calculate the percent donor and recipient present in post-transplant specimens. This is a rapid, sensitive, and cost-effective method for monitoring chimerism in patients following HSCT.

Key words

Hematopoietic stem cell transplantation Engraftment Short tandem repeat (STR) Capillary electrophoresis 

Notes

Acknowledgments

The author would like to thank Dr. Constance Griffin, Michael Hafez, and Penny Spencer for technical assistance and critical reading of this manuscript.

References

  1. 1.
    Antin JH, Childs R, Filipovich AH, Giralt S, Mackinnon S, Spitzer T, Weisdorf D (2001) Establishment of complete and mixed donor chimerism after allogeneic lymphohematopoietic transplantation: recommendations from a workshop at the 2001 tandem meetings of the international bone marrow transplant registry and the American society of blood and marrow transplantation. Biol Blood Marrow Transplant 7:473–485PubMedCrossRefGoogle Scholar
  2. 2.
    Baron F, Sandmaier BM (2006) Chimerism and outcomes after allogeneic hematopoietic cell transplantation following nonmyeloablative conditioning. Leukemia 20:1690–1700PubMedCrossRefGoogle Scholar
  3. 3.
    Toor AA, Sabo RT, Chung HM, Roberts C, Manjili RH, Song S et al (2012) Favorable outcomes in patients with high donor-derived T cell count after in vivo T cell-depleted reduced-intensity allogeneic stem cell transplantation. Biol Blood Marrow Transplant 18:794–804PubMedCrossRefGoogle Scholar
  4. 4.
    Thiede C, Florek M, Bornhauser M, Ritter M, Mohr B, Brendel C, Ehninger G, Neubauer A (1999) Rapid quantification of mixed chimerism using multiplex amplification of short tandem repeat markers and fluorescence detection. Bone Marrow Transplant 23:1055–1060PubMedCrossRefGoogle Scholar
  5. 5.
    Nuckols JD, Rasheed BK, McGlennen RC, Bigner SH, Stenzel TT (2000) Evaluation of an automated technique for assessment of marrow engraftment after allogeneic bone marrow transplantation using a commercially available kit. Am J Clin Pathol 113:135–140PubMedCrossRefGoogle Scholar
  6. 6.
    Schichman SA, Suess P, Vertino AM, Gray PS (2002) Comparison of short tandem repeat and variable number tandem repeat genetic markers for quantitative determination of allogeneic bone marrow transplant engraftment. Bone Marrow Transplant 29:243–248PubMedCrossRefGoogle Scholar
  7. 7.
    Thiede C, Bornhauser M, Ehninger G (2004) Strategies and clinical implications of chimerism diagnostics after allogeneic hematopoietic stem cell transplantation. Acta Haematol 112:16–23PubMedCrossRefGoogle Scholar
  8. 8.
    Thiede C, Bornhauser M, Ehninger G (2004) Evaluation of STR informativity for chimerism testing–comparative analysis of 27 STR systems in 203 matched related donor recipient pairs. Leukemia 18:248–254PubMedCrossRefGoogle Scholar
  9. 9.
    Hochberg EP, Miklos DB, Neuberg D, Eichner DA, McLaughlin SF, Mattes-Ritz A, Alyea EP, Antin JH, Soiffer RJ, Ritz J (2003) A novel rapid single nucleotide polymorphism (SNP)-based method for assessment of hematopoietic chimerism after allogeneic stem cell transplantation. Blood 101:363–369PubMedCrossRefGoogle Scholar
  10. 10.
    Eshel R, Vainas O, Shpringer M, Naparstek E (2006) Highly sensitive patient-specific real-time PCR SNP assay for chimerism monitoring after allogeneic stem cell transplantation. Lab Hematol 12:39–46PubMedCrossRefGoogle Scholar
  11. 11.
    Maas F, Schaap N, Kolen S, Zoetbrood A, Buno I, Dolstra H, de Witte T, Schattenberg A, van de Wiel-van Kemenade E (2003) Quantification of donor and recipient hemopoietic cells by real-time PCR of single nucleotide polymorphisms. Leukemia 17:621–629PubMedCrossRefGoogle Scholar
  12. 12.
    Alizadeh M, Bernard M, Danic B, Dauriac C, Birebent B, Lapart C, Lamy T, Le Prise PY, Beauplet A, Bories D, Semana G, Quelvennec E (2002) Quantitative assessment of hematopoietic chimerism after bone marrow transplantation by real-time quantitative polymerase chain reaction. Blood 99:4618–4625PubMedCrossRefGoogle Scholar
  13. 13.
    Masmas TN, Madsen HO, Petersen SL, Ryder LP, Svejgaard A, Alizadeh M, Vindelov LL (2005) Evaluation and automation of hematopoietic chimerism analysis based on real-time quantitative polymerase chain reaction. Biol Blood Marrow Transplant 11:558–566PubMedCrossRefGoogle Scholar
  14. 14.
    Jimenez-Velasco A, Barrios M, Roman-Gomez J, Navarro G, Buno I, Castillejo JA, Rodriguez AI, Garcia-Gemar G, Torres A, Heiniger AI (2005) Reliable quantification of hematopoietic chimerism after allogeneic transplantation for acute leukemia using amplification by real-time PCR of null alleles and insertion/deletion polymorphisms. Leukemia 19:336–343PubMedCrossRefGoogle Scholar
  15. 15.
    Koldehoff M, Steckel NK, Hlinka M, Beelen DW, Elmaagacli AH (2006) Quantitative analysis of chimerism after allogeneic stem cell transplantation by real-time polymerase chain reaction with single nucleotide polymorphisms, standard tandem repeats, and Y-chromosome-specific sequences. Am J Hematol 81:735–746PubMedCrossRefGoogle Scholar
  16. 16.
    Oliver DH, Thompson RE, Griffin CA, Eshleman JR (2000) Use of single nucleotide polymorphisms (SNP) and real-time polymerase chain reaction for bone marrow engraftment analysis. J Mol Diagn 2:202–208PubMedCrossRefGoogle Scholar
  17. 17.
    Harries LW, Wickham CL, Evans JC, Rule SA, Joyner MV, Ellard S (2005) Analysis of haematopoietic chimaerism by quantitative real-time polymerase chain reaction. Bone Marrow Transplant 35:283–290PubMedCrossRefGoogle Scholar
  18. 18.
    Last Willasch A, Eing S, Weber G, Kuçi S, Schneider G, Soerensen J et al (2010) Enrichment of cell subpopulations applying automated MACS technique: purity, recovery and applicability for PCR-based chimerism analysis. Bone Marrow Transplant 45:181–189CrossRefGoogle Scholar
  19. 19.
    Zhou M, Sheldon S, Akel N, Killeen AA (1999) Chromosomal aneuploidy in leukemic blast crisis: a potential source of error in interpretation of bone marrow engraftment analysis by VNTR amplification. Mol Diagn 4:153–157PubMedCrossRefGoogle Scholar
  20. 20.
    Schichman SA, Lin P, Gilbrech LJ, Gray PS, Wilson CS, Sawyer JR (2002) Bone marrow transplant engraftment analysis with loss of an informative allele. J Mol Diagn 4:230–232PubMedCrossRefGoogle Scholar
  21. 21.
    Swierczynski SL, Hafez MJ, Philips J, Higman MA, Berg KD, Murphy KM (2005) Bone marrow engraftment analysis after granulocyte transfusion. J Mol Diagn 7:422–426PubMedCrossRefGoogle Scholar
  22. 22.
    Murphy KM, Berg KD, Geiger T, Hafez M, Flickinger KA, Cooper L, Pearson P, Eshleman JR (2005) Capillary electrophoresis artifact due to eosin: implications for the interpretation of molecular diagnostic assays. J Mol Diagn 7:143–148PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, New York 2013

Authors and Affiliations

  • Kathleen M. Murphy
    • 1
  1. 1.ProPath ServicesDallasUSA

Personalised recommendations