Detection of Recurrent Cytogenetic Abnormalities in Acute Lymphoblastic and Myeloid Leukemias Using Fluorescence In Situ Hybridization

  • Gail H. Vance
Part of the Methods in Molecular Biology book series (MIMB, volume 999)


Cytogenetic identification of clonal abnormalities present in leukemia is critical for accurate diagnosis of the disease and determination of specific therapeutic interventions for the patient. Fluorescence in situ hybridization (FISH) studies complement the diagnostic karyotype by providing a higher resolution of analysis with clarification of rearrangements observed by G-banding and identification of cryptic abnormalities not observed by the light microscope. This chapter will discuss FISH methodology as practiced in the cancer cytogenetic laboratory.

Key words

Cytogenetics Chromosomes Molecular cytogenetics Fluorescence in situ hybridization 



The author would like to acknowledge the IU Cytogenetics Laboratory personnel and especially the FISH team members: Haki Choi, Ryan Stohler, Ryanne Berger, Lisa Wright, Matthew Sweckor, and Virginia Thurston. Thanks also to Shani Stiles for her talented clerical assistance.


  1. 1.
    Byrd JC, Mrozek K, Dodge RK, Carroll AJ, Edwards CG, Artheru DC et al (2002) Pretreatment cytogenetic abnormalities are predictive of induction success, cumulative incidence of relapse, and overall survival in adult patients with de novo acute myeloid leukemia: results from Cancer and Leukemia Group B (CALGB 8461). Blood 100:4325–4336PubMedCrossRefGoogle Scholar
  2. 2.
    Nowell P, Hungerford D (1960) A minute chromosome in human chronic granulocytic leukemia. Science 132:1497Google Scholar
  3. 3.
    Pinkel D, Straume T, Gray JW (1986) Cytogenetic analysis using quantitative, high sensitivity, fluorescence hybridization. Proc Natl Acad Sci USA 83:2934–2938PubMedCrossRefGoogle Scholar
  4. 4.
    Heerema NA, Maben KD, Bernstein J, Breitfeld PP, Neiman RS, Vance GH (1996) Dicentric (9;20)(p11;q11) identified by fluorescence in situ hybridization in four pediatric acute lymphoblastic leukemia patients. Cancer Genet Cytogenet 92:111–115PubMedCrossRefGoogle Scholar
  5. 5.
    Brown J, Jawad M, Twigg SRF, Saracoglu K, Sauerbrey A, Thomas AD et al (2002) A cryptic t(5;11)(q35;p15.5) in 2 children with acute myeloid leukemia with apparently normal karyotypes, identified by multiplex fluorescence in situ hybridization telomere assay. Blood 99:2526–2531PubMedCrossRefGoogle Scholar
  6. 6.
    Dierlamm J, Stul M, Vranckx H, Michaux L, Weghuis DE, Speleman F et al (1998) FISH identifies inv(16)(p13q22) masked by translocations in three cases of acute myeloid leukemia. Genes Chromosomes Cancer 22:87–94PubMedCrossRefGoogle Scholar
  7. 7.
    Jaffe ES, Harris NL, Stein H, Vardiman JW (eds) (2001) World Health Organization classification of tumours, pathology and genetics of tumours of haematopoietic and lymphoid tissues. IARC, LyonGoogle Scholar
  8. 8.
    Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H et al (eds) (2008) WHO classification of tumours of haematopoietic and lymphoid tissues. IARC, LyonGoogle Scholar
  9. 9.
    Spurkbeck JL, Adams SA, Stupca PJ, Dewald GW (2004) Primer on medical genomics, part XI: visualizing human chromosomes. Mayo Clin Proc 79:58–75CrossRefGoogle Scholar
  10. 10.
    Telenius H, Carter NP, Bebb C, Nordenskjold M, Ponder BJ, Tunnacliffe A (1992) Degenerate oligonucleotide-primed PCR: general amplification of target DNA by a single degenerate primer. Genomics 13:718–725PubMedCrossRefGoogle Scholar
  11. 11.
    Cushman LJ, Torres-Martinez W, Cherry AM, Manning MA, Abdul-Rahman O, Anderson CE et al (2005) A report of three patients with an interstitial deletion of chromosome 15q24. Am J Med Genet 137A:65–71CrossRefGoogle Scholar
  12. 12.
  13. 13.
    Shaffer LG, Slovak ML, Campbell LJ (eds) (2009) ISCN (2009): an international system for human cytogenetic nomenclature. S. Karger, BaselGoogle Scholar
  14. 14.
    Wiktor AE, Van Dyke DL, Stupca PJ, Ketterling RP, Thorland EC, Shearer BM et al (2006) Preclinical validation of fluorescence in situ hybridization assays for clinical practice. Genet Med 8:16–23PubMedCrossRefGoogle Scholar
  15. 15.
    American College of Medical Genetics (2006) Standards and guidelines for clinical genetics laboratory. Section E.
  16. 16.
    Clinical Laboratory Standards Institute (2004) Fluorescence in situ hybridization (FISH) methods for medical genetics; Approved guidelines, vol MM7-A. 24. Wayne, PA, pp 1–46Google Scholar
  17. 17.
    Clinical Laboratory Improvement Amendments, 1988.
  18. 18.
    Proficiency Testing.
  19. 19.
    Wolff AC, Hammond E, Schwartz JN, Hagerty K, Allred DC, Cote R et al (2007) American Society of Clinical Oncology/College of American Pathologists Guideline recommendations for HER2 testing in breast cancer. J Clin Oncol 25:118–143PubMedCrossRefGoogle Scholar
  20. 20.
    Dewald GW, Schad CR, Christensen ER, Tiede AL, Zinsmeister AR, Spurbeck JL et al (1993) The application of fluorescent in situ hybridization to detect Mbcr/abl fusion in variant Ph chromosomes in CML and ALL. Cancer Genet Cytogenet 71:7–14PubMedCrossRefGoogle Scholar
  21. 21.
    Romana SP, Mauchauffe M, Le Coniat M, Chumakov I, Le Paslier D, Berger R et al (1995) The t(12;21) of acute lymphoblastic leukemia results in a tel-AML1 gene fusion. Blood 85:3662–3670PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, New York 2013

Authors and Affiliations

  • Gail H. Vance
    • 1
  1. 1.Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisUSA

Personalised recommendations