Quantitative BCR-ABL1 RQ-PCR Fusion Transcript Monitoring in Chronic Myelogenous Leukemia

  • Franklin R. Moore
  • Carole B. Rempfer
  • Richard D. Press
Part of the Methods in Molecular Biology book series (MIMB, volume 999)


The reciprocal Philadelphia translocation between chromosomes 9 and 22 [t(9;22)(q34;q11)] creates a BCR-ABL1 fusion protein that occurs in approximately 95% of cases of chronic myelogenous leukemia (CML), 15% of cases of adult acute lymphoblastic leukemia, and 5% of adult cases of acute myeloid leukemia. The BCR-ABL1 protein is a constitutively activated tyrosine kinase that induces and maintains the neoplastic phenotype in these leukemias. PCR-based methods to identify and quantitate the tumor-specific BCR-ABL1 RNA have been shown to be an ultrasensitive diagnostic/prognostic tool for Philadelphia-positive leukemias. A novel tyrosine kinase inhibitor (TKI), imatinib, has been confirmed as an effective targeted treatment in most CML patients. A consensus goal for TKI treatment is to achieve a major molecular response (MMR), defined as a 3-log (1,000-fold) reduction in BCR-ABL1 transcripts. Patients who achieve an MMR have been shown to have a significantly reduced risk of disease progression. Conversely, increasing post-therapy BCR-ABL1 RNA levels convey a significantly increased risk of disease progression. The early identification of these high-risk patients may allow early changes to the therapeutic strategy, before frank relapse. Thus, quantitative measurement of BCR-ABL1 transcripts in blood and bone marrow both aids in the initial diagnosis of CML and is essential for routine post-therapy minimal residual disease monitoring. We describe here a method for quantitating BCR-ABL1 transcripts in peripheral blood or bone marrow of CML patients using real-time quantitative reverse transcription PCR (RQ-PCR).

Key words

Chronic myelogenous leukemia BCR-ABL1 Philadelphia chromosome Imatinib Major molecular response 


  1. 1.
    Baccarani M, Saglio G, Goldman J, Hochhaus A, Simonsson B, Appelbaum F et al (2006) Evolving concepts in the management of chronic myeloid leukemia. Recommendations from an expert panel on behalf of the European Leukemianet. Blood 108:1809–1820PubMedCrossRefGoogle Scholar
  2. 2.
    O’Hare T, Eide CA, Deininger MW (2007) Bcr-Abl kinase domain mutations, drug resistance and the road to a cure of chronic myeloid leukemia. Blood 110:2242–2249PubMedCrossRefGoogle Scholar
  3. 3.
    Radich JP (2001) Philadelphia chromosome-positive acute lymphocytic leukemia. Hematol Oncol Clin North Am 15:21–36PubMedCrossRefGoogle Scholar
  4. 4.
    Druker BJ, Talpaz M, Resta DJ, Peng B, Buchdunger E, Ford JM et al (2001) Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 344:1031–1037PubMedCrossRefGoogle Scholar
  5. 5.
    Hughes TP, Kaeda J, Branford S, Rudzki Z, Hochhaus A, Hensley ML et al (2003) Frequency of major molecular responses to imatinib or interferon alfa plus cytarabine in newly diagnosed chronic myeloid leukemia. N Engl J Med 349:1423–1432PubMedCrossRefGoogle Scholar
  6. 6.
    Druker BJ, Guilhot F, O’Brien SG, Gathmann I, Kantarjian H, Gattermann N et al (2006) Five-Year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med 355:2408–2417PubMedCrossRefGoogle Scholar
  7. 7.
    Press RD, Galderisi C, Yang R, Rempfer C, Willis SG, Mauro MJ et al (2007) A half-log increase in BCR-ABL RNA predicts a higher risk of relapse in patients with CML with an imatinib-induced complete cytogenetic response (CCR). Clin Cancer Res 13:6136–6143PubMedCrossRefGoogle Scholar
  8. 8.
    Press RD, Willis SG, Laudadio J, Mauro MJ, Deininger MW (2009) Determining the rise in BCR-ABL RNA that optimally predicts a kinase domain mutation in patients with chronic myeloid leukemia on imatinib. Blood 114:2598–2605PubMedCrossRefGoogle Scholar
  9. 9.
    Cross NC, Feng L, Chase A, Bungey J, Hughes TP, Goldman JM (1993) Competitive polymerase chain reaction to estimate the number of BCR-ABL transcripts in chronic myeloid leukemia patients after bone marrow transplantation. Blood 82:1929–1936PubMedGoogle Scholar
  10. 10.
    Press RD, Love Z, Tronnes AA, Yang R, Tran T, Mongoue-Tchokote S et al (2006) BCR-ABL mRNA levels at and after the time of a complete cytogenetic response (CCR) predict the duration of CCR in imatinib-treated patients with CML. Blood 107:4250–4256PubMedCrossRefGoogle Scholar
  11. 11.
    Branford S, Fletcher L, Cross NC, Muller MC, Hochhaus A, Kim DW et al (2008) Desirable performance characteristics for BCR-ABL measurement on an international reporting scale to allow consistent interpretation of individual patient response and comparison of response rates between clinical trials. Blood 112:3330–3338PubMedCrossRefGoogle Scholar
  12. 12.
    Hughes TP, Deininger MW, Hochhaus A, Branford S, Radich JP, Kaeda J et al (2006) Monitoring CML patients responding to treatment with tyrosine kinase inhibitors - Review and recommendations for ‘harmonizing’ current methodology for detecting BCR-ABL transcripts and kinase domain mutations and for expressing results. Blood 108:28–37PubMedCrossRefGoogle Scholar
  13. 13.
    White H, Matejtschuk P, Rigsby P, Gabert J, Lin F, Wang L et al (2010) Establishment of the first World Health Organization international genetic reference panel for quantitation of BCR-ABL mRNA. Blood 116:e111–e117PubMedCrossRefGoogle Scholar
  14. 14.
    Emig M, Saussele S, Wittor H, Weisser A, Reiter A, Willer A et al (1999) Accurate and rapid analysis of residual disease in patients with CML using specific fluorescent hybridization probes for real time quantitative RT-PCR. Leukemia 13:1825–1832PubMedCrossRefGoogle Scholar
  15. 15.
    Westgard JO, Barry PL, Hunt MR, Groth T (1981) A multi-rule Shewhart chart for quality control in clinical chemistry. Clin Chem 27:493–501PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, New York 2013

Authors and Affiliations

  • Franklin R. Moore
    • 1
  • Carole B. Rempfer
    • 2
  • Richard D. Press
    • 2
  1. 1.Department of PathologyBaystate Medical Center/Tufts University School of MedicineSpringfieldUSA
  2. 2.Department of PathologyOregon Health and Sciences UniversityPortlandUSA

Personalised recommendations