Skip to main content

Designed Self-Assembling Peptides as Templates for the Synthesis of Metal Nanoparticles

  • Protocol
  • First Online:
Protein Nanotechnology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 996))

Abstract

Self-assembling peptides are water soluble and form biocompatible nanostructures under mild conditions through non-covalent interactions. They form supramolecular structures such as ribbons, nanotubes, and fibrils. Of particular interest is the possibility of using these peptide fibrils as templates for the growth of inorganic materials, such as metallic nanoparticles. The ability to reliably produce metal-coated fibrils with robust binding of metal nanoparticles is a vital first step towards the exploitation of these fibrils as conducting nanowires with applications in nano-circuitry. One promising strategy consists of the rational introduction of metal-binding amino acids (such as cysteine) at the level of the peptide building block. Upon assembly of the building blocks into fibrils, cysteine residues that remain accessible at the outside of the fibril core could serve as nucleation sites for metals. We will review in this chapter a case study of rationally designed cysteine-containing peptides and basic protocols for their metallization with silver, gold, and platinum nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fratzl P, Gupta HS, Paschalis EP, Roschger P (2004) Structure and mechanical quality of the collagen-mineral nano-composite in bone. J Mater Chem 14:2115–2123

    Article  CAS  Google Scholar 

  2. Weiner S, Nudelman F, Sone E, Zaslansky P, Addadi L (2006) Mineralized biological materials: a perspective on interfaces and interphases designed over millions of years. Biointerphases 1:P12–P14

    Article  PubMed  CAS  Google Scholar 

  3. Aizenberg J, Sundar VC, Yablon AD, Weaver JC, Chen G (2004) Biological glass fibers: correlation between optical and structural properties. Proc Natl Acad Sci USA 101:3358–3363

    Article  PubMed  CAS  Google Scholar 

  4. Politi Y, Mahamid J, Goldberg H, Weiner S, Addadi L (2007) Asprich mollusk shell protein: in vitro experiments aimed at elucidating function in CaCO3 crystallization. Crystengcomm 9:1171–1177

    Article  CAS  Google Scholar 

  5. Scheibel T, Parthasarathy R, Sawicki G, Lin XM, Jaeger H, Lindquist SL (2003) Conducting nanowires built by controlled self-assembly of amyloid fibers and selective metal deposition. Proc Natl Acad Sci USA 100:4527–4532

    Article  PubMed  CAS  Google Scholar 

  6. Reches M, Gazit E (2003) Casting metal nanowires within discrete self-assembled peptide nanotubes. Science 300:625–627

    Article  PubMed  CAS  Google Scholar 

  7. Lamm MS, Sharma N, Rajagopal K, Beyer FL, Schneider JP, Pochan DJ (2008) Laterally spaced linear nanoparticle arrays templated by laminated beta-sheet fibrils. Adv Mater 20:447–451

    Article  CAS  Google Scholar 

  8. Kasotakis E, Mossou E, Adler-Abramovich L, Mitchell EP, Forsyth VT, Gazit E, Mitraki A (2009) Design of metal-binding sites onto self-assembled peptide fibrils. Biopolymers 92:164–172

    Article  PubMed  CAS  Google Scholar 

  9. Carny O, Shalev DE, Gazit E (2006) Fabrication of coaxial metal nanocables using a self-assembled peptide nanotube scaffold. Nano Lett 6:1594–1597

    Article  PubMed  CAS  Google Scholar 

  10. Papanikolopoulou K, Schoehn G, Forge V, Forsyth VT, Riekel C, Hernandez JF, Ruigrok RWH, Mitraki A (2005) Amyloid fibril formation from sequences of a natural beta-structured fibrous protein, the adenovirus fiber. J Biol Chem 280:2481–2490

    Article  PubMed  CAS  Google Scholar 

  11. Gazit E (2007) Self-assembled peptide nanostructures: the design of molecular building blocks and their technological utilization. Chem Soc Rev 36:1263–1269

    Article  PubMed  CAS  Google Scholar 

  12. Gazit E (2007) Use of biomolecular templates for the fabrication of metal nanowires. FEBS J 274:317–322

    Article  PubMed  CAS  Google Scholar 

  13. Gilead S, Gazit E (2005) Self-organization of short peptide fragments: from amyloid fibrils to nanoscale supramolecular assemblies. Supramol Chem 17:87–92

    Article  CAS  Google Scholar 

  14. Tamamis P, Kasotakis E, Mitraki A, Archontis G (2009) Amyloid-like self-assembly of peptide sequences from the adenovirus fiber shaft: insights from molecular dynamics simulations. J Phys Chem B 113:15639–15647

    Article  PubMed  CAS  Google Scholar 

  15. Colombo G, Soto P, Gazit E (2007) Peptide self-assembly at the nanoscale: a challenging target for computational and experimental biotechnology. Trends Biotechnol 25:211–218

    Article  PubMed  CAS  Google Scholar 

  16. van Raaij MJ, Mitraki A, Lavigne G, Cusack S (1999) A triple beta-spiral in the adenovirus fibre shaft reveals a new structural motif for a fibrous protein. Nature 401:935–938

    Article  PubMed  Google Scholar 

  17. Kimling J, Maier M, Okenve B, Kotaidis V, Ballot H, Plech A (2006) Turkevich method for gold nanoparticle synthesis revisited. J Phys Chem B 110:15700–15707

    Article  PubMed  CAS  Google Scholar 

  18. Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346

    Article  PubMed  CAS  Google Scholar 

  19. Chiang CL, Hsu MB, Lai LB (2004) Control of nucleation and growth of gold nanoparticles in AOT/Span80/isooctane mixed reverse micelles. J Solid State Chem 177:3891–3895

    Article  CAS  Google Scholar 

  20. Kamat PV, Flumiani M, Hartland GV (1998) Picosecond dynamics of silver nanoclusters. Photoejection of electrons and fragmentation. J Phys Chem B 102:3123–3128

    Article  CAS  Google Scholar 

  21. Song YJ, Challa SR, Medforth CJ, Qiu Y, Watt RK, Pena D, Miller JE, van Swol F, Shelnutt JA (2004) Synthesis of peptide-nanotube platinum-nanoparticle composites. Chem Commun 9:1044–1045

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Kasotakis, E., Mitraki, A. (2013). Designed Self-Assembling Peptides as Templates for the Synthesis of Metal Nanoparticles. In: Gerrard, J. (eds) Protein Nanotechnology. Methods in Molecular Biology, vol 996. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-354-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-354-1_11

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-353-4

  • Online ISBN: 978-1-62703-354-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics