Skip to main content

Approaches to Cloning of Pain-Related Ion Channel Genes

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 998))

Abstract

Molecular pain research is a relatively new and rapidly expanding field that represents advancement in conventional pain research. One of the fundamentals of molecular pain involves the cloning of genes and especially the ion channels specifically involved in nociceptive processing at the periphery and centrally. A variety of approaches were used to isolate these critically important genes. Cloning of these genes involved innovative strategies based on existing molecular approaches. This review will discuss well-utilized cloning approaches and their exploitation in molecular pain research.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Akopian AN, Abson NC, Wood JN (1996) Molecular genetic approaches to nociceptor development and function. Trends Neurosci 19:240–246

    Article  PubMed  CAS  Google Scholar 

  2. Muir WW 3rd, Woolf CJ (2001) Mechanisms of pain and their therapeutic implications. J Am Vet Med Assoc 219:1346–1356

    Article  PubMed  CAS  Google Scholar 

  3. Berg P (2008) Meetings that changed the world: Asilomar 1975: DNA modification secured. Nature 455:290–291

    Article  PubMed  CAS  Google Scholar 

  4. Berg P, Baltimore D, Brenner S, Roblin RO 3rd, Singer MF (1975) Asilomar conference on recombinant DNA molecules. Science 188:991–994

    Article  PubMed  CAS  Google Scholar 

  5. Akopian AN, Sivilotti L, Wood JN (1996) A tetrodotoxin-resistant voltage-gated sodium channel expressed by sensory neurons. Nature 379:257–262

    Article  PubMed  CAS  Google Scholar 

  6. Chen CC, Akopian AN, Sivilotti L, Colquhoun D, Burnstock G, Wood JN (2005) A P2X purinoceptor expressed by a subset of sensory neurons. Nature 377:428–431

    Article  Google Scholar 

  7. Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389:816–824

    Article  PubMed  CAS  Google Scholar 

  8. Story GM, Peier AM, Reeve AJ, Eid SR, Mosbacher J, Hricik TR, Earley TJ, Hergarden AC, Andersson DA, Hwang SW et al (2003) ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 112:819–829

    Article  PubMed  CAS  Google Scholar 

  9. McKemy DD, Neuhausser WM, Julius D (2002) Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 416:52–58

    Article  PubMed  CAS  Google Scholar 

  10. Waldmann R, Champigny G, Bassilana F, Heurteaux C, Lazdunski M (1997) A proton-gated cation channel involved in acid-sensing. Nature 386:173–177

    Article  PubMed  CAS  Google Scholar 

  11. Chen CL, Broom DC, Liu Y, de Nooij JC, Li Z, Cen C, Samad OA, Jessell TM, Woolf CJ, Ma Q (2006) Runx1 determines nociceptive sensory neuron phenotype and is required for thermal and neuropathic pain. Neuron 49:365–377

    Article  PubMed  CAS  Google Scholar 

  12. Kim AY, Tang Z, Liu Q, Patel KN, Maag D, Geng Y, Dong X (2008) Pirt, a phosphoinositide-binding protein, functions as a regulatory subunit of TRPV1. Cell 133:475–485

    Article  PubMed  CAS  Google Scholar 

  13. Ravenall SJ, Gavazzi I, Wood JN, Akopian AN (2002) A peripheral nervous system actin-binding protein regulates neurite outgrowth. Eur J Neurosci 15:281–290

    Article  PubMed  Google Scholar 

  14. Woolf CJ, Costigan M (1999) Transcriptional and posttranslational plasticity and the generation of inflammatory pain. Proc Natl Acad Sci U S A 96:7723–7730

    Article  PubMed  CAS  Google Scholar 

  15. Woolf CJ, Salter MW (2000) Neuronal ­plasticity: increasing the gain in pain. Science 288: 1765–1769

    Article  PubMed  CAS  Google Scholar 

  16. Befort K, Costigan M, Woolf CJ (2001) Differential gene expression—how to find new analgesic targets. Curr Opin Investig Drugs 2:396–398

    PubMed  CAS  Google Scholar 

  17. Indo Y, Tsuruta M, Hayashida Y, Karim MA, Ohta K, Kawano T, Mitsubuchi H, Tonoki H, Awaya Y, Matsuda I (1996) Mutations in the TRKA/NGF receptor gene in patients with congenital insensitivity to pain with anhidrosis. Nat Genet 13:485–488

    Article  PubMed  CAS  Google Scholar 

  18. Drenth JP, Waxman SG (2007) Mutations in sodium-channel gene SCN9A cause a spectrum of human genetic pain disorders. J Clin Invest 117:3603–3609

    Article  PubMed  CAS  Google Scholar 

  19. Fertleman CR, Baker MD, Parker KA, Moffatt S, Elmslie FV, Abrahamsen B, Ostman J, Klugbauer N, Wood JN, Gardiner RM et al (2006) SCN9A Mutations in paroxysmal extreme pain disorder: allelic variants underlie distinct channel defects and phenotypes. Neuron 52:767–774

    Article  PubMed  CAS  Google Scholar 

  20. Weiss J, Pyrski M, Jacobi E, Bufe B, Willnecker V, Schick B, Zizzari P, Gossage SJ, Greer CA, Leinders-Zufall T et al (2011) Loss-of-function mutations in sodium channel Nav1.7 cause anosmia. Nature 472:186–190

    Article  PubMed  CAS  Google Scholar 

  21. Mogil JS, Yu L, Basbaum AI (2000) Pain genes?: natural variation and transgenic mutants. Annu Rev Neurosci 23:777–811

    Article  PubMed  CAS  Google Scholar 

  22. Diatchenko L, Slade GD, Nackley AG, Bhalang K, Sigurdsson A, Belfer I, Goldman D, Xu K, Shabalina SA, Shagin D et al (2005) Genetic basis for individual variations in pain perception and the development of a chronic pain condition. Hum Mol Genet 14:135–143

    Article  PubMed  CAS  Google Scholar 

  23. Akopian AN, Souslova V, England S, Okuse K, Ogata N, Ure J, Smith A, Kerr BJ, McMahon SB, Boyce S et al (1999) The tetrodotoxin-resistant sodium channel SNS has a specialized function in pain pathways. Nat Neurosci 2:541–548

    Article  PubMed  CAS  Google Scholar 

  24. Caterina MJ, Leffler A, Malmberg AB, Martin WJ, Trafton J, Petersen-Zeitz KR, Koltzenburg M, Basbaum AI, Julius D (2000) Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288:306–313

    Article  PubMed  CAS  Google Scholar 

  25. Kwan KY, Allchorne AJ, Vollrath MA, Christensen AP, Zhang DS, Woolf CJ, Corey DP (2006) TRPA1 contributes to cold, mechanical, and chemical nociception but is not essential for hair-cell transduction. Neuron 50:277–289

    Article  PubMed  CAS  Google Scholar 

  26. Souslova V, Cesare P, Ding Y, Akopian AN, Stanfa L, Suzuki R, Carpenter K, Dickenson A, Boyce S, Hill R et al (2000) Warm-coding deficits and aberrant inflammatory pain in mice lacking P2X3 receptors. Nature 407:1015–1017

    Article  PubMed  CAS  Google Scholar 

  27. Zurborg S, Piszczek A, Martinez C, Hublitz P, Al Banchaabouchi M, Moreira P, Perlas E, Heppenstall PA (2011) Generation and characterization of an Advillin-Cre driver mouse line. Mol Pain 7:66–69

    Article  PubMed  CAS  Google Scholar 

  28. Stirling LC, Forlani G, Baker MD, Wood JN, Matthews EA, Dickenson AH, Nassar MA (2005) Nociceptor-specific gene deletion using heterozygous Nav1.8-Cre recombinase mice. Pain 113:27–36

    Article  PubMed  CAS  Google Scholar 

  29. Meunier A, Pohl M (2009) Lentiviral vectors for gene transfer into the spinal cord glial cells. Gene Ther 16:476–482

    Article  PubMed  CAS  Google Scholar 

  30. Ro LS, Chang KH (2005) Neuropathic pain: mechanisms and treatments. Chang Gung Med J 28:597–605

    PubMed  Google Scholar 

  31. Hedrick SM, Cohen DI, Nielsen EA, Davis MM (1984) Isolation of cDNA clones encoding T cell-specific membrane-associated proteins. Nature 308:149–153

    Article  PubMed  CAS  Google Scholar 

  32. Hedrick SM, Nielsen EA, Kavaler J, Cohen DI, Davis MM (1984) Sequence relationships between putative T-cell receptor polypeptides and immunoglobulins. Nature 308:153–158

    Article  PubMed  CAS  Google Scholar 

  33. Chen CC, England S, Akopian AN, Wood JN (1998) A sensory neuron-specific, proton-gated ion channel. Proc Natl Acad Sci U S A 95:10240–10245

    Article  PubMed  CAS  Google Scholar 

  34. Akopian AN, Wood JN (1995) Peripheral nervous system-specific genes identified by subtractive cDNA cloning. J Biol Chem 270:21264–21270

    Article  PubMed  CAS  Google Scholar 

  35. Coste B, Mathur J, Schmidt M, Earley TJ, Ranade S, Petrus MJ, Dubin AE, Patapoutian A (2010) Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science 330:55–60

    Article  PubMed  CAS  Google Scholar 

  36. Waldmann R, Bassilana F, de Weille J, Champigny G, Heurteaux C, Lazdunski M (1997) Molecular cloning of a non-inactivating proton-gated Na  +  channel specific for sensory neurons. J Biol Chem 272:20975–20978

    Article  PubMed  CAS  Google Scholar 

  37. Rougeon F, Chambraud B, Foote S, Panthier JJ, Nageotte R, Corvol P (1981) Molecular cloning of a mouse submaxillary gland renin cDNA fragment. Proc Natl Acad Sci USA 78:6367–6371

    Article  PubMed  CAS  Google Scholar 

  38. Fodor SP, Rava RP, Huang XC, Pease AC, Holmes CP, Adams CL (1993) Multiplexed biochemical assays with biological chips. Nature 364:555–556

    Article  PubMed  CAS  Google Scholar 

  39. Diogenes A, Patwardhan AM, Jeske NA, Ruparel NB, Goffin V, Akopian AN, Hargreaves KM (2006) Prolactin modulates TRPV1 in female rat trigeminal sensory neurons. J Neurosci 26:8126–8136

    Article  PubMed  CAS  Google Scholar 

  40. Brake AJ, Wagenbach MJ, Julius D (1994) New structural motif for ligand-gated ion channels defined by an ionotropic ATP receptor. Nature 371:519–523

    Article  PubMed  CAS  Google Scholar 

  41. Drew LJ, Wood JN, Cesare P (2002) Distinct mechanosensitive properties of capsaicin-sensitive and -insensitive sensory neurons. J Neurosci 22:RC228

    PubMed  Google Scholar 

  42. Axelrod FB, Hilz MJ (2003) Inherited autonomic neuropathies. Semin Neurol 23:381–390

    Article  PubMed  Google Scholar 

  43. Axelrod FB, Gold-von Simson G (2007) Hereditary sensory and autonomic neuropathies: types II, III, and IV. Orphanet J Rare Dis 2:39

    Article  PubMed  Google Scholar 

  44. Cox JJ, Reimann F, Nicholas AK, Thornton G, Roberts E, Springell K, Karbani G, Jafri H, Mannan J, Raashid Y et al (2006) An SCN9A channelopathy causes congenital inability to experience pain. Nature 444:894–898

    Article  PubMed  CAS  Google Scholar 

  45. Fischer TZ, Waxman SG (2010) Familial pain syndromes from mutations of the Nav1.7 sodium channel. Ann N Y Acad Sci 1184:196–207

    Article  PubMed  CAS  Google Scholar 

  46. Yang Y, Wang Y, Li S, Xu Z, Li H, Ma L, Fan J, Bu D, Liu B, Fan Z et al (2004) Mutations in SCN9A, encoding a sodium channel alpha subunit, in patients with primary erythermalgia. J Med Genet 41:171–174

    Article  PubMed  CAS  Google Scholar 

  47. Bejaoui K, Wu C, Scheffler MD, Haan G, Ashby P, Wu L, de Jong P, Brown RH Jr (2001) SPTLC1 is mutated in hereditary sensory neuropathy, type 1. Nat Genet 27:261–262

    Article  PubMed  CAS  Google Scholar 

  48. Bejaoui K, Uchida Y, Yasuda S, Ho M, Nishijima M, Brown RH Jr, Holleran WM, Hanada K (2002) Hereditary sensory neuropathy type 1 mutations confer dominant negative effects on serine palmitoyltransferase, critical for sphingolipid synthesis. J Clin Invest 110:1301–1308

    PubMed  CAS  Google Scholar 

  49. Slaugenhaupt SA, Blumenfeld A, Gill SP, Leyne M, Mull J, Cuajungco MP, Liebert CB, Chadwick B, Idelson M, Reznik L et al (2001) Tissue-specific expression of a splicing mutation in the IKBKAP gene causes familial dysautonomia. Am J Hum Genet 68:598–605

    Article  PubMed  CAS  Google Scholar 

  50. Isom LL (2001) Sodium channel beta subunits: anything but auxiliary. Neuroscientist 7:42–54

    Article  PubMed  CAS  Google Scholar 

  51. Okuse K, Malik-Hall M, Baker MD, Poon WY, Kong H, Chao MV, Wood JN (2002) Annexin II light chain regulates sensory neuron-specific sodium channel expression. Nature 417:653–656

    Article  PubMed  CAS  Google Scholar 

  52. Vaghy PL, Striessnig J, Miwa K, Knaus HG, Itagaki K, McKenna E, Glossmann H, Schwartz A (1987) Identification of a novel 1,4-dihydropyridine- and phenylalkylamine-binding polypeptide in calcium channel preparations. J Biol Chem 262:14337–14342

    PubMed  CAS  Google Scholar 

  53. Hartshorne RP, Catterall WA (1984) The sodium channel from rat brain. Purification and subunit composition. J Biol Chem 259:1667–1675

    PubMed  CAS  Google Scholar 

  54. Fields S, Song O (1989) A novel genetic system to detect protein–protein interactions. Nature 340:245–246

    Article  PubMed  CAS  Google Scholar 

  55. Noda M, Takahashi H, Tanabe T, Toyosato M, Furutani Y, Hirose T, Asai M, Inayama S, Miyata T, Numa S (1982) Primary structure of alpha-subunit precursor of Torpedo californica acetylcholine receptor deduced from cDNA sequence. Nature 299:793–797

    Article  PubMed  CAS  Google Scholar 

  56. Noda M, Takahashi H, Tanabe T, Toyosato M, Kikyotani S, Furutani Y, Hirose T, Takashima H, Inayama S, Miyata T et al (1983) Structural homology of Torpedo californica acetylcholine receptor subunits. Nature 302:528–532

    Article  PubMed  CAS  Google Scholar 

  57. Noda M, Takahashi H, Tanabe T, Toyosato M, Kikyotani S, Hirose T, Asai M, Takashima H, Inayama S, Miyata T et al (1983) Primary structures of beta- and delta-subunit precursors of Torpedo californica acetylcholine receptor deduced from cDNA sequences. Nature 301:251–255

    Article  PubMed  CAS  Google Scholar 

  58. Noda M, Ikeda T, Kayano T, Suzuki H, Takeshima H, Kurasaki M, Takahashi H, Numa S (1986) Existence of distinct sodium channel messenger RNAs in rat brain. Nature 320:188–192

    Article  PubMed  CAS  Google Scholar 

  59. Noda M, Ikeda T, Suzuki H, Takeshima H, Takahashi T, Kuno M, Numa S (1986) Expression of functional sodium channels from cloned cDNA. Nature 322:826–828

    Article  PubMed  CAS  Google Scholar 

  60. Tanabe T, Takeshima H, Mikami A, Flockerzi V, Takahashi H, Kangawa K, Kojima M, Matsuo H, Hirose T, Numa S (1987) Primary structure of the receptor for calcium channel blockers from skeletal muscle. Nature 328:313–318

    Article  PubMed  CAS  Google Scholar 

  61. Tanabe T, Beam KG, Powell JA, Numa S (2002) Restoration of excitation-contraction coupling and slow calcium current in dysgenic muscle by dihydropyridine receptor complementary DNA. Nature 336:134–139

    Article  Google Scholar 

  62. Xu H, Ramsey IS, Kotecha SA, Moran MM, Chong JA, Lawson D, Ge P, Lilly J, Silos-Santiago I, Xie Y et al (2002) TRPV3 is a calcium-permeable temperature-sensitive cation channel. Nature 418:181–186

    Article  PubMed  CAS  Google Scholar 

  63. Kayano T, Noda M, Flockerzi V, Takahashi H, Numa S (1988) Primary structure of rat brain sodium channel III deduced from the cDNA sequence. FEBS Lett 228:187–194

    Article  PubMed  CAS  Google Scholar 

  64. Clapham DE (2003) TRP channels as cellular sensors. Nature 426:517–524

    Article  PubMed  CAS  Google Scholar 

  65. MacKenzie AB, Surprenant A, North RA (1999) Functional and molecular diversity of purinergic ion channel receptors. Ann N Y Acad Sci 868:716–729

    Article  PubMed  CAS  Google Scholar 

  66. North RA, Barnard EA (1997) Nucleotide receptors. Curr Opin Neurobiol 7:346–357

    Article  PubMed  CAS  Google Scholar 

  67. Toledo-Aral JJ, Moss BL, He ZJ, Koszowski AG, Whisenand T, Levinson SR, Wolf JJ, Silos-Santiago I, Halegoua S, Mandel G (1997) Identification of PN1, a predominant voltage-dependent sodium channel expressed principally in peripheral neurons. Proc Natl Acad Sci U S A 94:1527–1532

    Article  PubMed  CAS  Google Scholar 

  68. Guler AD, Lee H, Iida T, Shimizu I, Tominaga M, Caterina M (2002) Heat-evoked activation of the ion channel, TRPV4. J Neurosci 22:6408–6414

    PubMed  CAS  Google Scholar 

  69. Xu XZ, Moebius F, Gill DL, Montell C (2001) Regulation of melastatin, a TRP-related protein, through interaction with a cytoplasmic isoform. Proc Natl Acad Sci USA 98:10692–10697

    Article  PubMed  CAS  Google Scholar 

  70. Waldmann R, Champigny G, Lingueglia E, De Weille JR, Heurteaux C, Lazdunski M (1999) H(+)-gated cation channels. Ann N Y Acad Sci 868:67–76

    Article  PubMed  CAS  Google Scholar 

  71. Miljanich GP, Ramachandran J (1995) Antagonists of neuronal calcium channels: structure, function, and therapeutic implications. Annu Rev Pharmacol Toxicol 35:707–734

    Article  PubMed  CAS  Google Scholar 

  72. Waxman SG, Cummins TR, Dib-Hajj SD, Black JA (2000) Voltage-gated sodium channels and the molecular pathogenesis of pain: a review. J Rehabil Res Dev 37:517–528

    PubMed  CAS  Google Scholar 

  73. Kubo Y (1994) Towards the elucidation of the structural-functional relationship of inward rectifying K+ channel family. Neurosci Res 21(2):109–117

    Article  PubMed  CAS  Google Scholar 

  74. Noda M, Shimizu S, Tanabe T, Takai T, Kayano T, Ikeda T, Takahashi H, Nakayama H, Kanaoka Y, Minamino N et al (1984) Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence. Nature 312:121–127

    Article  PubMed  CAS  Google Scholar 

  75. Papazian DM, Schwarz TL, Tempel BL, Jan YN, Jan LY (1987) Cloning of genomic and complementary DNA from shaker, a putative potassium channel gene from drosophila. Science 237:749–753

    Article  PubMed  CAS  Google Scholar 

  76. Boulter J, Evans K, Goldman D, Martin G, Treco D, Heinemann S, Patrick J (1986) Isolation of a cDNA clone coding for a possible neural nicotinic acetylcholine receptor alpha-subunit. Nature 319:368–374

    Article  PubMed  CAS  Google Scholar 

  77. Caterina MJ, Rosen TA, Tominaga M, Brake AJ, Julius D (1999) A capsaicin-receptor homologue with a high threshold for noxious heat. Nature 398:436–441

    Article  PubMed  CAS  Google Scholar 

  78. Smith GD, Gunthorpe MJ, Kelsell RE, Hayes PD, Reilly P, Facer P, Wright JE, Jerman JC, Walhin JP, Ooi L et al (2002) TRPV3 is a temperature-sensitive vanilloid receptor-like protein. Nature 418:186–190

    Article  PubMed  CAS  Google Scholar 

  79. Dib-Hajj SD, Tyrrell L, Black JA, Waxman SG (1998) NaN, a novel voltage-gated Na channel, is expressed preferentially in peripheral sensory neurons and down-regulated after axotomy. Proc Natl Acad Sci USA 95:8963–8968

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

I would like to thank to members of my lab Dr. Belugin, Mr. Patil, Ms. Salas, and Ms. Phoebe as well as collaborators Drs. Wood, Hargreaves, Henry, Jeske, Diogenes, Gamper Staruschenko, Brooks, Dube, Nikita Ruparel, Shivani Ruparel, and Patwardhan for helping me in contribution to molecular pain research. Supporting grants are DE014928 and DE019311.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Akopian, A.N. (2013). Approaches to Cloning of Pain-Related Ion Channel Genes. In: Gamper, N. (eds) Ion Channels. Methods in Molecular Biology, vol 998. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-351-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-351-0_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-350-3

  • Online ISBN: 978-1-62703-351-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics