Skip to main content

Generation of Human-Induced Pluripotent Stem Cells by Lentiviral Transduction

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 997))

Abstract

Human somatic cells can be reprogrammed to the pluripotent state to become human-induced pluripotent stem cells (hiPSC). This reprogramming is achieved by activating signaling pathways that are expressed during early development. These pathways can be induced by ectopic expression of four transcription factors—Oct4, Sox2, Klf4, and c-Myc. Although there are many ways to deliver these transcription factors into the somatic cells, this chapter will provide protocols that can be used to generate hiPSC from lentiviruses.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Evans M (2011) Discovering pluripotency: 30 years of mouse embryonic stem cells. Nat Rev Mol Cell Biol 12:680–686

    Article  PubMed  CAS  Google Scholar 

  2. Pierce GB (1967) Teratocarcinoma: model for a developmental concept of cancer. Curr Top Dev Biol 2:223–246

    Article  PubMed  CAS  Google Scholar 

  3. Stevens LC (1967) The biology of teratomas. Adv Morphog 6:1–31

    PubMed  CAS  Google Scholar 

  4. Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156

    Article  PubMed  CAS  Google Scholar 

  5. Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA 78:7634–7638

    Article  PubMed  CAS  Google Scholar 

  6. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147

    Article  PubMed  CAS  Google Scholar 

  7. Yabut O, Bernstein HS (2011) The promise of human embryonic stem cells in aging-associated diseases. Aging 3:494–508

    PubMed  CAS  Google Scholar 

  8. Jensen J, Hyllner J, Bjorquist P (2009) Human embryonic stem cell technologies and drug discovery. J Cell Physiol 219:513–519

    Article  PubMed  CAS  Google Scholar 

  9. Leeb C, Jurga M, McGuckin C, Forraz N, Thallinger C, Moriggl R, Kenner L (2011) New perspectives in stem cell research: beyond embryonic stem cells. Cell Prolif 44(Suppl 1):9–14

    Article  PubMed  Google Scholar 

  10. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  PubMed  CAS  Google Scholar 

  11. Vitale AM, Wolvetang E, Mackay-Sim A (2011) Induced pluripotent stem cells: a new technology to study human diseases. Int J Biochem Cell Biol 43:843–846

    Article  PubMed  CAS  Google Scholar 

  12. Wu SM, Hochedlinger K (2011) Harnessing the potential of induced pluripotent stem cells for regenerative medicine. Nat Cell Biol 13:497–505

    Article  PubMed  CAS  Google Scholar 

  13. Ebert AD, Yu J, Rose FF Jr, Mattis VB, Lorson CL, Thomson JA, Svendsen CN (2009) Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature 457:277–280

    Article  PubMed  CAS  Google Scholar 

  14. Moretti A, Bellin M, Welling A, Jung CB, Lam JT, Bott-Flugel L, Dorn T, Goedel A, Hohnke C, Hofmann F, Seyfarth M, Sinnecker D, Schomig A, Laugwitz KL (2010) Patient-specific induced pluripotent stem-cell models for long-QT syndrome. N Engl J Med 363:1397–1409

    Article  PubMed  CAS  Google Scholar 

  15. Hussein SM, Nagy K, Nagy A (2011) Human induced pluripotent stem cells: the past, present, and future. Clin Pharmacol Ther 89: 741–745

    Article  PubMed  CAS  Google Scholar 

  16. Soldner F, Hockemeyer D, Beard C, Gao Q, Bell GW, Cook EG, Hargus G, Blak A, Cooper O, Mitalipova M, Isacson O, Jaenisch R (2009) Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell 136:964–977

    Article  PubMed  CAS  Google Scholar 

  17. Sommer CA, Sommer AG, Longmire TA, Christodoulou C, Thomas DD, Gostissa M, Alt FW, Murphy GJ, Kotton DN, Mostoslavsky G (2010) Excision of reprogramming transgenes improves the differentiation potential of iPS cells generated with a single excisable vector. Stem Cells 28:64–74

    PubMed  CAS  Google Scholar 

  18. Kaji K, Norrby K, Paca A, Mileikovsky M, Mohseni P, Woltjen K (2009) Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature 458:771–775

    Article  PubMed  CAS  Google Scholar 

  19. Woltjen K, Michael IP, Mohseni P, Desai R, Mileikovsky M, Hamalainen R, Cowling R, Wang W, Liu P, Gertsenstein M, Kaji K, Sung HK, Nagy A (2009) piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 458:766–770

    Article  PubMed  CAS  Google Scholar 

  20. Si-Tayeb K, Noto FK, Sepac A, Sedlic F, Bosnjak ZJ, Lough JW, Duncan SA (2010) Generation of human induced pluripotent stem cells by simple transient transfection of plasmid DNA encoding reprogramming factors. BMC Dev Biol 10:81

    Article  PubMed  Google Scholar 

  21. Seki T, Yuasa S, Oda M, Egashira T, Yae K, Kusumoto D, Nakata H, Tohyama S, Hashimoto H, Kodaira M, Okada Y, Seimiya H, Fusaki N, Hasegawa M, Fukuda K (2010) Generation of induced pluripotent stem cells from human terminally differentiated circulating T cells. Cell Stem Cell 7:11–14

    Article  PubMed  CAS  Google Scholar 

  22. Miyoshi N, Ishii H, Nagano H, Haraguchi N, Dewi DL, Kano Y, Nishikawa S, Tanemura M, Mimori K, Tanaka F, Saito T, Nishimura J, Takemasa I, Mizushima T, Ikeda M, Yamamoto H, Sekimoto M, Doki Y, Mori M (2011) Reprogramming of mouse and human cells to pluripotency using mature microRNAs. Cell Stem Cell 8:633–638

    Article  PubMed  CAS  Google Scholar 

  23. Delenda C (2004) Lentiviral vectors: optimization of packaging, transduction and gene expression. J Gene Med 6(Suppl 1):S125–S138

    Article  PubMed  CAS  Google Scholar 

  24. Lin S, Talbot P (2011) Methods for culturing mouse and human embryonic stem cells. Methods Mol Biol 690:31–56

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

Supported by NIH U24 MH068457, RC1 CA147187, and R21 DA032984-01.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Moore, J.C. (2013). Generation of Human-Induced Pluripotent Stem Cells by Lentiviral Transduction. In: Lakshmipathy, U., Vemuri, M. (eds) Pluripotent Stem Cells. Methods in Molecular Biology, vol 997. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-348-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-348-0_4

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-347-3

  • Online ISBN: 978-1-62703-348-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics