Skip to main content

Epigenome Analysis of Pluripotent Stem Cells

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 997))

Abstract

Mis-regulation of gene expression due to epigenetic abnormalities has been linked with complex genetic disorders, psychiatric illness, and cancer. In addition, the dynamic epigenetic changes that occur in pluripotent stem cells are believed to impact regulatory networks essential for proper lineage development. Chromatin immunoprecipitation (ChIP) is a technique used to enrich genomic fragments using antibodies against specific chromatin modifications, such as DNA-binding proteins or modified histones. Until recently, many ChIP protocols required large numbers of cells for each immunoprecipitation. This severely limited analysis of rare cell populations or post-mitotic, differentiated cell lines. Here, we describe a low cell number ChIP protocol with next generation sequencing and analysis that has the potential to uncover novel epigenetic regulatory pathways that were previously difficult or impossible to obtain.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Feinberg AP (2008) Epigenetics at the epicenter of modern medicine. JAMA 299:1345–1350

    Article  PubMed  CAS  Google Scholar 

  2. Bird A (2007) Perceptions of epigenetics. Nature 447:396–398

    Article  PubMed  CAS  Google Scholar 

  3. Hamby ME, Coskun V, Sun YE (2008) Transcriptional regulation of neuronal differentiation: the epigenetic layer of complexity. Biochim Biophys Acta 1779:432–437

    Article  PubMed  CAS  Google Scholar 

  4. Wu H, Sun YE (2006) Epigenetic regulation of stem cell differentiation. Pediatr Res 59:21R–25R

    Article  PubMed  Google Scholar 

  5. Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16:6–21

    Article  PubMed  CAS  Google Scholar 

  6. Goldberg AD, Allis CD, Bernstein E (2007) Epigenetics: a landscape takes shape. Cell 128:635–638

    Article  PubMed  CAS  Google Scholar 

  7. Mehler MF (2008) Epigenetics and the nervous system. Ann Neurol 64:602–617

    Article  PubMed  CAS  Google Scholar 

  8. Bernstein BE, Mikkelsen TS, Xie X et al (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125:315–326

    Article  PubMed  CAS  Google Scholar 

  9. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  PubMed  CAS  Google Scholar 

  10. Stadtfeld M, Maherali N, Breault DT et al (2008) Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse. Cell Stem Cell 2:230–240

    Article  PubMed  CAS  Google Scholar 

  11. Yamanaka S (2009) A fresh look at iPS cells. Cell 137:13–17

    Article  PubMed  CAS  Google Scholar 

  12. Solomon MJ, Larsen PL, Varshavsky A (1988) Mapping protein-DNA interactions in vivo with formaldehyde: evidence that histone H4 is retained on a highly transcribed gene. Cell 53:937–947

    Article  PubMed  CAS  Google Scholar 

  13. Hebbes TR, Thorne AW, Crane-Robinson C (1988) A direct link between core histone acetylation and transcriptionally active chromatin. EMBO J 7:1395–1402

    PubMed  CAS  Google Scholar 

  14. Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705

    Article  PubMed  CAS  Google Scholar 

  15. Ren B, Robert F, Wyrick JJ et al (2000) Genome-wide location and function of DNA binding proteins. Science 290:2306–2309

    Article  PubMed  CAS  Google Scholar 

  16. Lieb JD, Liu X, Botstein D et al (2001) Promoter-specific binding of Rap1 revealed by genome-wide maps of protein-DNA association. Nat Genet 28:327–334

    Article  PubMed  CAS  Google Scholar 

  17. Johnson DS, Mortazavi A, Myers RM et al (2007) Genome-wide mapping of in vivo protein-DNA interactions. Science 316:1497–1502

    Article  PubMed  CAS  Google Scholar 

  18. Robertson G, Hirst M, Bainbridge M et al (2007) Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nat Methods 4:651–657

    Article  PubMed  CAS  Google Scholar 

  19. Barski A, Cuddapah S, Cui K et al (2007) High-resolution profiling of histone methylations in the human genome. Cell 129:823–837

    Article  PubMed  CAS  Google Scholar 

  20. Schones DE, Zhao K (2008) Genome-wide approaches to studying chromatin modifications. Nat Rev Genet 9:179–191

    Article  PubMed  CAS  Google Scholar 

  21. Langmead B, Trapnell C, Pop M et al (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25

    Article  PubMed  Google Scholar 

  22. Li H, Handsaker B, Wysoker A et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079

    Article  PubMed  Google Scholar 

  23. Park PJ (2009) ChIP-seq: advantages and challenges of a maturing technology. Nat Rev Genet 10:669–680

    Article  PubMed  CAS  Google Scholar 

  24. Fejes AP, Robertson G, Bilenky M et al (2008) FindPeaks 3.1: a tool for identifying areas of enrichment from massively parallel short-read sequencing technology. Bioinformatics 24:1729–1730

    Article  PubMed  CAS  Google Scholar 

  25. Mangan ME, Williams JM, Kuhn RM et al (2009) The UCSC genome browser: what every molecular biologist should know. In: Ausubel FM et al (eds) Current protocols in molecular biology. Chapter 19, Unit 19 19

  26. Karolchik D, Hinrichs AS, Kent WJ (2011) The UCSC Genome Browser. In: Haines JL et al (eds) Current protocols in human genetics. Chapter 18, Unit18 16

  27. Zhu LJ, Gazin C, Lawson ND et al (2010) ChIPpeakAnno: a Bioconductor package to annotate ChIP-seq and ChIP-chip data. BMC Bioinformatics 11:237

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by grants from NIH (1R21MH085088 and 1RC1CA147187). C.L.R. was an NSF IGERT fellow (DGE 0801620).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ricupero, C.L., Swerdel, M.R., Hart, R.P. (2013). Epigenome Analysis of Pluripotent Stem Cells. In: Lakshmipathy, U., Vemuri, M. (eds) Pluripotent Stem Cells. Methods in Molecular Biology, vol 997. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-348-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-348-0_16

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-347-3

  • Online ISBN: 978-1-62703-348-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics