Skip to main content

Chemical Derivatization and Purification of Peptide-Toxins for Probing Ion Channel Complexes

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 995))

Abstract

Ion channels function as multi-protein complexes made up of ion-conducting α-subunits and regulatory β-subunits. To detect, identify, and quantitate the regulatory β-subunits in functioning K+ channel complexes, we have chemically derivatized peptide-toxins that specifically react with strategically placed cysteine residues in the channel complex. Two protein labeling approaches have been developed to derivatize the peptide-toxin, charybdotoxin, with hydrophilic and hydrophobic bismaleimides, and other molecular probes. Using these cysteine-reactive peptide-toxins, we have specifically targeted KCNQ1-KCNE1 K+ channel complexes expressed in both Xenopus oocytes and mammalian cells. The modular design of the reagents should permit this approach to be applied to the many ion channel complexes involved in electrical excitability as well as salt and water homoeostasis.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. McCrossan ZA, Abbott GW (2004) The MinK-related peptides. Neuropharmacology 47:787–821

    Article  PubMed  CAS  Google Scholar 

  2. Lu R, Alioua A, Kumar Y, Eghbali M, Stefani E, Toro L (2006) MaxiK channel partners: physiological impact. J Physiol 570:65–72

    Article  PubMed  CAS  Google Scholar 

  3. Hanlon MR, Wallace BA (2002) Structure and function of voltage-dependent ion channel regulatory beta subunits. Biochemistry 41:2886–2894

    Article  PubMed  CAS  Google Scholar 

  4. Dolphin AC (2003) Beta subunits of voltage-gated calcium channels. J Bioenerg Biomembr 35:599–620

    Article  PubMed  CAS  Google Scholar 

  5. Choi E, Abbott GW (2007) The MiRP2-Kv3.4 potassium channel: muscling in on Alzheimer’s disease. Mol Pharmacol 72:499–501

    Article  PubMed  CAS  Google Scholar 

  6. Splawski I, Shen J, Timothy KW, Lehmann MH, Priori S, Robinson JL, Moss AJ, Schwartz PJ, Towbin JA, Vincent GM, Keating MT (2000) Spectrum of mutations in long-QT ­syndrome genes. KVLQT1, HERG, SCN5A, KCNE1, and KCNE2. Circulation 102:1178–1185

    Article  PubMed  CAS  Google Scholar 

  7. Abbott GW, Butler MH, Bendahhou S, Dalakas MC, Ptacek LJ, Goldstein SA (2001) MiRP2 forms potassium channels in skeletal muscle with Kv3.4 and is associated with periodic paralysis. Cell 104:217–231

    Article  PubMed  CAS  Google Scholar 

  8. Morin TM, Kobertz WR (2008) Counting membrane-embedded KCNE β-subunits in functioning K+ channel complexes. Proc Natl Acad Sci U S A 105:1478–1482

    Article  PubMed  CAS  Google Scholar 

  9. Morin TM, Kobertz WR (2007) A derivatized scorpion toxin reveals the functional output of heteromeric KCNQ1-KCNE K+ channel complexes. ACS Chem Biol 2:469–473

    Article  PubMed  CAS  Google Scholar 

  10. Soh H, Goldstein SA (2008) I SA channel complexes include four subunits each of DPP6 and Kv4.2. J Biol Chem 283:15072–15077

    Article  PubMed  CAS  Google Scholar 

  11. Chen H, Kim LA, Rajan S, Xu S, Goldstein SA (2003) Charybdotoxin binding in the IKs pore demonstrates two MinK subunits in each channel complex. Neuron 40:15–23

    Article  PubMed  CAS  Google Scholar 

  12. Gross A, Abramson T, MacKinnon R (1994) Transfer of the scorpion toxin receptor to an insensitive potassium channel. Neuron 13:961–966

    Article  PubMed  CAS  Google Scholar 

  13. Alabi AA, Bahamonde MI, Jung HJ, Kim JI, Swartz KJ (2007) Portability of paddle motif function and pharmacology in voltage sensors. Nature 450:370–375

    Article  PubMed  CAS  Google Scholar 

  14. Bosmans F, Martin-Eauclaire MF, Swartz KJ (2008) Deconstructing voltage sensor function and pharmacology in sodium channels. Nature 456:202–208

    Article  PubMed  CAS  Google Scholar 

  15. Shimony E, Sun T, Kolmakova-Partensky L, Miller C (1994) Engineering a uniquely reactive thiol into a cysteine-rich peptide. Protein Eng 7:503–507

    Article  PubMed  CAS  Google Scholar 

  16. Rosen H (1957) A modified ninhydrin colorimetric analysis for amino acids. Arch Biochem Biophys 67:10–15

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Hua, Z., Kobertz, W.R. (2013). Chemical Derivatization and Purification of Peptide-Toxins for Probing Ion Channel Complexes. In: Banghart, M. (eds) Chemical Neurobiology. Methods in Molecular Biology, vol 995. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-345-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-345-9_2

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-344-2

  • Online ISBN: 978-1-62703-345-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics