Skip to main content

In Silico Systems Biology Approaches for the Identification of Antimicrobial Targets

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 993))

Abstract

Classical antibiotic discovery efforts have relied mainly on molecular library screening coupled with target-based lead optimization. The conventional approaches are unable to tackle the emergence of antibiotic resistance and are failing to provide understanding of multiple mechanisms behind drug actions and the off-target effects. These insufficiencies have prompted researchers to focus on a multidisciplinary approach of systems biology-based antibiotic discovery. Systems biology is capable of providing a big-picture view for therapeutic targets through interconnected networks of biochemical reactions derived from both experimental and computational techniques. In this chapter, we have compiled software tools and databases that are typically used for target identification through in silico analyses. We have also identified enzyme- and broad-spectrum metabolite-based drug targets that have emerged through in silico systems microbiology.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Bevan P, Ryder H, Shaw I (1995) Identifying small-molecule lead compounds: the screening approach to drug discovery. Trends Biotechnol 13:115–121

    Article  PubMed  CAS  Google Scholar 

  2. Kitano H (2002) Systems biology: a brief overview. Science 295:1662–1664

    Article  PubMed  CAS  Google Scholar 

  3. Gwynn MN, Portnoy A, Rittenhouse SF et al (2010) Challenges of antibacterial discovery revisited. Ann N Y Acad Sci 1213:5–19

    Article  PubMed  Google Scholar 

  4. Westerhoff HV, Palsson BO (2004) The evolution of molecular biology into systems biology. Nat Biotechnol 22:1249–1252

    Article  PubMed  CAS  Google Scholar 

  5. Butcher EC, Berg EL, Kunkel EJ (2004) Systems biology in drug discovery. Nat Biotechnol 22:1253–1259

    Article  PubMed  CAS  Google Scholar 

  6. Davidov E, Holland J, Marple E et al (2003) Advancing drug discovery through systems biology. Drug Discov Today 8:175–183

    Article  PubMed  CAS  Google Scholar 

  7. Aderem A (2005) Systems biology: its practice and challenges. Cell 121:511–513

    Article  PubMed  CAS  Google Scholar 

  8. Palsson B (2000) The challenges of in silico biology. Nat Biotechnol 18:1147–1150

    Article  PubMed  CAS  Google Scholar 

  9. Kitano H (2002) Computational systems biology. Nature 420:206–210

    Article  PubMed  CAS  Google Scholar 

  10. Raman K, Yeturu K, Chandra N (2008) TargetTB: a target identification pipeline for Mycobacterium tuberculosis through an interactome, reactome and genome-scale structural analysis. BMC Syst Biol 2:109

    Article  PubMed  Google Scholar 

  11. Gu S, Chen J, Dobos KM et al (2003) Comprehensive proteomic profiling of the membrane constituents of a Mycobacterium tuberculosis strain. Mol Cell Proteomics 2:1284–1296

    Article  PubMed  CAS  Google Scholar 

  12. Bahk YY, Kim SA, Kim JS et al (2004) Antigens secreted from Mycobacterium tuberculosis: identification by proteomics approach and test for diagnostic marker. Proteomics 4:3299–3307

    Article  PubMed  CAS  Google Scholar 

  13. Mawuenyega KG, Forst CV, Dobos KM et al (2005) Mycobacterium tuberculosis functional network analysis by global subcellular protein profiling. Mol Biol Cell 16:396–404

    Article  PubMed  CAS  Google Scholar 

  14. Mattow J, Siejak F, Hagens K et al (2007) An improved strategy for selective and efficient enrichment of integral plasma membrane proteins of mycobacteria. Proteomics 7:1687–1701

    Article  PubMed  CAS  Google Scholar 

  15. Malen H, Berven FS, Fladmark KE et al (2007) Comprehensive analysis of exported proteins from Mycobacterium tuberculosis H37Rv. Proteomics 7:1702–1718

    Article  PubMed  Google Scholar 

  16. Gonzalez-Zamorano M, Mendoza-Hernandez G, Xolalpa W et al (2009) Mycobacterium tuberculosis glycoproteomics based on ConA-lectin affinity capture of mannosylated proteins. J Proteome Res 8:721–733

    Article  PubMed  CAS  Google Scholar 

  17. Sarker M, Chopra S, Mortelmans K et al (2011) In silico pathway analysis predicts metabolites that are potential antimicrobial targets. J Comput Sci Syst Biol 4:021–026

    Article  CAS  Google Scholar 

  18. Munger J, Bennett BD, Parikh A et al (2008) Systems-level metabolic flux profiling identifies fatty acid synthesis as a target for antiviral therapy. Nat Biotechnol 26:1179–1186

    Article  PubMed  CAS  Google Scholar 

  19. Kim HU, Kim TY, Lee SY (2010) Genome-scale metabolic network analysis and drug targeting of multi-drug resistant pathogen Acinetobacter baumannii AYE. Mol Biosyst 6:339–348

    Article  PubMed  CAS  Google Scholar 

  20. Kim TY, Kim HU, Lee SY (2010) Metabolite-centric approaches for the discovery of antibacterials using genome-scale metabolic networks. Metab Eng 12:105–111

    Article  PubMed  CAS  Google Scholar 

  21. Kim HU, Kim SY, Jeong H et al (2011) Integrative genome-scale metabolic analysis of Vibrio vulnificus for drug targeting and discovery. Mol Syst Biol 7:460

    PubMed  Google Scholar 

  22. Schilling CH, Palsson BO (2000) Assessment of the metabolic capabilities of Haemophilus influenzae Rd through a genome-scale pathway analysis. J Theor Biol 203:249–283

    Article  PubMed  CAS  Google Scholar 

  23. Yeh I, Hanekamp T, Tsoka S et al (2004) Computational analysis of Plasmodium falciparum metabolism: organizing genomic information to facilitate drug discovery. Genome Res 14:917–924

    Article  PubMed  CAS  Google Scholar 

  24. Rahman SA, Schomburg D (2006) Observing local and global properties of metabolic pathways: ‘load points’ and ‘choke points’ in the metabolic networks. Bioinformatics 22:1767–1774

    Article  PubMed  CAS  Google Scholar 

  25. Jamshidi N, Palsson BO (2007) Investigating the metabolic capabilities of Mycobacterium tuberculosis H37Rv using the in silico strain iNJ661 and proposing alternative drug targets. BMC Syst Biol 1:26

    Article  PubMed  Google Scholar 

  26. Chavali AK, Whittemore JD, Eddy JA et al (2008) Systems analysis of metabolism in the pathogenic trypanosomatid Leishmania major. Mol Syst Biol 4:177

    Article  PubMed  Google Scholar 

  27. Mazumdar V, Snitkin ES, Amar S et al (2009) Metabolic network model of a human oral pathogen. J Bacteriol 191:74–90

    Article  PubMed  CAS  Google Scholar 

  28. Oberhardt MA, Goldberg JB, Hogardt M et al (2010) Metabolic network analysis of Pseudomonas aeruginosa during chronic cystic fibrosis lung infection. J Bacteriol 192:5534–5548

    Article  PubMed  CAS  Google Scholar 

  29. Raghunathan A, Shin S, Daefler S (2010) Systems approach to investigating host-pathogen interactions in infections with the biothreat agent Francisella. Constraints-based model of Francisella tularensis. BMC Syst Biol 4:118

    Article  PubMed  Google Scholar 

  30. Crowther GJ, Shanmugam D, Carmona SJ et al (2010) Identification of attractive drug targets in neglected-disease pathogens using an in silico approach. PLoS Negl Trop Dis 4:e804

    Article  PubMed  Google Scholar 

  31. Plata G, Hsiao TL, Olszewski KL et al (2010) Reconstruction and flux-balance analysis of the Plasmodium falciparum metabolic network. Mol Syst Biol 6:408

    Article  PubMed  Google Scholar 

  32. Navratil V, De Chassey B, Combe CR et al (2011) When the human viral infectome and diseasome networks collide: towards a systems biology platform for the aetiology of human diseases. BMC Syst Biol 5:13

    Article  PubMed  Google Scholar 

  33. Fatumo S, Plaimas K, Adebiyi E et al (2011) Comparing metabolic network models based on genomic and automatically inferred enzyme information from Plasmodium and its human host to define drug targets in silico. Infect Genet Evol 11:708–715

    Article  PubMed  CAS  Google Scholar 

  34. Fang K, Zhao H, Sun C et al (2011) Exploring the metabolic network of the epidemic pathogen Burkholderia cenocepacia J2315 via genome-scale reconstruction. BMC Syst Biol 5:83

    Article  PubMed  CAS  Google Scholar 

  35. Ng A, Bursteinas B, Gao Q et al (2006) Resources for integrative systems biology: from data through databases to networks and dynamic system models. Brief Bioinform 7:318–330

    Article  PubMed  CAS  Google Scholar 

  36. Jagarlapudi SA, Kishan KV (2009) Database systems for knowledge-based discovery. Methods Mol Biol 575:159–172

    Article  PubMed  CAS  Google Scholar 

  37. Ghosh S, Matsuoka Y, Asai Y et al (2011) Software for systems biology: from tools to integrated platforms. Nat Rev Genet 12:821–832

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Sarker, M., Talcott, C., Galande, A.K. (2013). In Silico Systems Biology Approaches for the Identification of Antimicrobial Targets. In: Kortagere, S. (eds) In Silico Models for Drug Discovery. Methods in Molecular Biology, vol 993. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-342-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-342-8_2

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-341-1

  • Online ISBN: 978-1-62703-342-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics