Skip to main content

Recognition of Nontrivial Remote Homology Relationships Involving Proteins of Helicobacter pylori: Implications for Function Recognition

  • Protocol
  • First Online:
Book cover In Silico Models for Drug Discovery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 993))

  • 3704 Accesses

Abstract

This chapter explains techniques for recognition of nontrivial remote homology relationships involving proteins of Helicobacter pylori and their implications for function recognition. Using the remote homology detection method, employing multiple-profile representations for every protein domain family, remotely related domain family information has been assigned for the 122, 77, and 95 protein sequences of 26695, and J99, and HPAG1 strains of H. pylori, respectively. Relationships for some of the H. pylori protein sequences with Pfam domain families are reported for the first time. In publicly available domain databases such as Pfam, for some of the H. pylori protein sequences functional domain information is associated only with part(s) of the proteins. In the current study other parts of such proteins have been shown to be remotely related to known domain families, raising the possibility of identifying functions for parts of the proteins that do not yet have domains assigned. Further, homologues of enzymes that potentially catalyze step(s) in various metabolic processes in H. pylori have been identified for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blaser MJ, Parsonnet J (1994) Parasitism by the “slow” bacterium Helicobacter pylori leads to altered gastric homeostasis and neoplasia. J Clin Invest 94:4–8

    Article  PubMed  CAS  Google Scholar 

  2. Kusters JG, van Vliet AH, Kuipers EJ (2006) Pathogenesis of Helicobacter pylori infection. Clin Microbiol Rev 19:449–490

    Article  PubMed  CAS  Google Scholar 

  3. Marshall BJ, Warren JR (1984) Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet 1:1311–1315

    Article  PubMed  CAS  Google Scholar 

  4. Tee W, Lambert JR, Dwyer B (1995) Cytotoxin production by Helicobacter pylori from patients with upper gastrointestinal tract diseases. J Clin Microbiol 33:1203–1205

    PubMed  CAS  Google Scholar 

  5. Zarrilli R, Ricci V, Romano M (1999) Molecular response of gastric epithelial cells to Helicobacter pylori-induced cell damage. Cell Microbiol 1:93–99

    Article  PubMed  CAS  Google Scholar 

  6. Bourzac KM, Guillemin K (2005) Helicobacter pylori-host cell interactions mediated by type IV secretion. Cell Microbiol 7:911–919

    Article  PubMed  CAS  Google Scholar 

  7. Cascales E, Christie PJ (2003) The versatile bacterial type IV secretion systems. Nat Rev Microbiol 1:137–149

    Article  PubMed  CAS  Google Scholar 

  8. Eaton KA, Brooks CL, Morgan DR et al (1991) Essential role of urease in pathogenesis of gastritis induced by Helicobacter pylori in gnotobiotic piglets. Infect Immun 59:2470–2475

    PubMed  CAS  Google Scholar 

  9. Meyer-Rosberg K, Scott DR, Rex D et al (1996) The effect of environmental pH on the proton motive force of Helicobacter pylori. Gastroenterology 111:886–900

    Article  PubMed  CAS  Google Scholar 

  10. Mobley HL, Island MD, Hausinger RP (1995) Molecular biology of microbial ureases. Microbiol Rev 59:451–480

    PubMed  CAS  Google Scholar 

  11. Weeks DL, Eskandari S, Scott DR et al (2000) A H  +  -gated urea channel: the link between Helicobacter pylori urease and gastric colonization. Science 287:482–485

    Article  PubMed  CAS  Google Scholar 

  12. Cover TL, Blaser MJ (1996) Helicobacter pylori infection, a paradigm for chronic mucosal inflammation: pathogenesis and implications for eradication and prevention. Adv Intern Med 41:85–117

    PubMed  CAS  Google Scholar 

  13. Matsumoto Y, Marusawa H, Kinoshita K et al (2007) Helicobacter pylori infection triggers aberrant expression of activation-induced cytidine deaminase in gastric epithelium. Nat Med 13:470–476

    Article  PubMed  CAS  Google Scholar 

  14. Beswick EJ, Suarez G, Reyes VE (2006) H. pylori and host interactions that influence pathogenesis. World J Gastroenterol 12:5599–5605

    PubMed  CAS  Google Scholar 

  15. Tomb JF, White O, Kerlavage AR et al (1997) The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388:539–547

    Article  PubMed  CAS  Google Scholar 

  16. Alm RA, Ling LS, Moir DT et al (1999) Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature 397:176–180

    Article  PubMed  Google Scholar 

  17. Oh JD, Kling-Backhed H, Giannakis M et al (2006) The complete genome sequence of a chronic atrophic gastritis Helicobacter pylori strain: evolution during disease progression. Proc Natl Acad Sci USA 103:9999–10004

    Article  PubMed  CAS  Google Scholar 

  18. Falush D, Wirth T, Linz B et al (2003) Traces of human migrations in Helicobacter pylori populations. Science 299:1582–1585

    Article  PubMed  CAS  Google Scholar 

  19. Finn RD, Tate J, Mistry J et al (2008) The Pfam protein families database. Nucleic Acids Res 36:D281–D288

    Article  PubMed  CAS  Google Scholar 

  20. Anand B, Gowri VS, Srinivasan N (2005) Use of multiple profiles corresponding to a sequence alignment enables effective detection of remote homologues. Bioinformatics 21:2821–2826

    Article  PubMed  CAS  Google Scholar 

  21. Gowri VS, Krishnadev O, Swamy CS et al (2006) MulPSSM: a database of multiple position-specific scoring matrices of protein domain families. Nucleic Acids Res 34:D243–D246

    Article  PubMed  CAS  Google Scholar 

  22. Gowri VS, Tina KG, Krishnadev O et al (2007) Strategies for the effective identification of remotely related sequences in multiple PSSM search approach. Proteins 67:789–794

    Article  PubMed  CAS  Google Scholar 

  23. Tyagi N, Swapna LS, Mohanty S et al (2009) Evolutionary divergence of Plasmodium falciparum: sequences, protein-protein interactions, pathways and processes. Infect Disord Drug Targets 9:257–271

    Article  PubMed  CAS  Google Scholar 

  24. Balaji S, Sujatha S, Kumarm SS et al (2001) PALI-a database of Phylogeny and ALIgnment of homologous protein structures. Nucleic Acids Res 29:61–65

    Article  PubMed  CAS  Google Scholar 

  25. Gowri VS, Pandit SB, Karthik PS et al (2003) Integration of related sequences with protein three-dimensional structural families in an updated version of PALI database. Nucleic Acids Res 31:486–488

    Article  PubMed  CAS  Google Scholar 

  26. Sujatha S, Balaji S, Srinivasan N (2001) PALI: a database of alignments and phylogeny of homologous protein structures. Bioinformatics 17:375–376

    Article  PubMed  CAS  Google Scholar 

  27. Murzin AG, Brennerm SE, Hubbard T et al (1995) SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol 247:536–540

    PubMed  CAS  Google Scholar 

  28. Marchler-Bauer A, Panchenko AR, Shoemaker BA et al (2002) CDD: a database of conserved domain alignments with links to domain three-dimensional structure. Nucleic Acids Res 30:281–283

    Article  PubMed  CAS  Google Scholar 

  29. Kelley LA, Sternberg MJ (2009) Protein structure prediction on the Web: a case study using the Phyre server. Nat Protoc 4:363–371

    Article  PubMed  CAS  Google Scholar 

  30. Bradshaw RA, Ericsson LH, Walsh KA et al (1969) The amino acid sequence of bovine carboxypeptidase A. Proc Natl Acad Sci USA 63:1389–1394

    Article  PubMed  CAS  Google Scholar 

  31. Rawlings ND, Barrett AJ (1993) Evolutionary families of peptidases. Biochem J 290(Pt 1):205–218

    PubMed  CAS  Google Scholar 

  32. Vallee BL, Auld DS (1990) Zinc coordination, function, and structure of zinc enzymes and other proteins. Biochemistry 29:5647–5659

    Article  PubMed  CAS  Google Scholar 

  33. Bignell C, Thomas CM (2001) The bacterial ParA-ParB partitioning proteins. J Biotechnol 91:1–34

    Article  PubMed  CAS  Google Scholar 

  34. Schumacher MA (2007) Structural biology of plasmid segregation proteins. Curr Opin Struct Biol 17:103–109

    Article  PubMed  CAS  Google Scholar 

  35. Khare D, Ziegelin G, Lanka E et al (2004) Sequence-specific DNA binding determined by contacts outside the helix-turn-helix motif of the ParB homolog KorB. Nat Struct Mol Biol 11:656–663

    Article  PubMed  CAS  Google Scholar 

  36. Jones DT (1999) Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 292:195–202

    Article  PubMed  CAS  Google Scholar 

  37. Oliva G, Fontes MR, Garratt RC et al (1995) Structure and catalytic mechanism of glucosamine 6-phosphate deaminase from Escherichia coli at 2.1 A resolution. Structure 3:1323–1332

    Article  PubMed  CAS  Google Scholar 

  38. Calcagno M, Campos PJ, Mulliert G et al (1984) Purification, molecular and kinetic properties of glucosamine-6-phosphate isomerase (deaminase) from Escherichia coli. Biochim Biophys Acta 787:165–173

    Article  PubMed  CAS  Google Scholar 

  39. Natarajan K, Datta A (1993) Molecular cloning and analysis of the NAG1 cDNA coding for glucosamine-6-phosphate deaminase from Candida albicans. J Biol Chem 268:9206–9214

    PubMed  CAS  Google Scholar 

  40. Lara-Lemus R, Libreros-Minotta CA, Altamirano MM et al (1992) Purification and characterization of glucosamine-6-phosphate deaminase from dog kidney cortex. Arch Biochem Biophys 297:213–220

    Article  PubMed  CAS  Google Scholar 

  41. Rogers MJ, Ohgi T, Plumbridge J et al (1988) Nucleotide sequences of the Escherichia coli nagE and nagB genes: the structural genes for the N-acetylglucosamine transport protein of the bacterial phosphoenolpyruvate: sugar phosphotransferase system and for glucosamine-6-phosphate deaminase. Gene 62:197–207

    Article  PubMed  CAS  Google Scholar 

  42. Montero-Moran GM, Lara-Gonzalez S, Alvarez-Anorve LI et al (2001) On the multiple functional roles of the active site histidine in catalysis and allosteric regulation of Escherichia coli glucosamine 6-phosphate deaminase. Biochemistry 40:10187–10196

    Article  PubMed  CAS  Google Scholar 

  43. Das AK, Helps NR, Cohen PT et al (1996) Crystal structure of the protein serine/threonine phosphatase 2C at 2.0 A resolution. EMBO J 15:6798–6809

    PubMed  CAS  Google Scholar 

  44. Moore F, Weekes J, Hardie DG (1991) Evidence that AMP triggers phosphorylation as well as direct allosteric activation of rat liver AMP-activated protein kinase. A sensitive mechanism to protect the cell against ATP depletion. Eur J Biochem 199:691–697

    Article  PubMed  CAS  Google Scholar 

  45. Stone JM, Collinge MA, Smith RD et al (1994) Interaction of a protein phosphatase with an Arabidopsis serine-threonine receptor kinase. Science 266:793–795

    Article  PubMed  CAS  Google Scholar 

  46. Maeda T, Tsai AY, Saito H (1993) Mutations in a protein tyrosine phosphatase gene (PTP2) and a protein serine/threonine phosphatase gene (PTC1) cause a synthetic growth defect in Saccharomyces cerevisiae. Mol Cell Biol 13:5408–5417

    PubMed  CAS  Google Scholar 

  47. Allen JW, Leach N, Ferguson SJ (2005) The histidine of the c-type cytochrome CXXCH haem-binding motif is essential for haem attachment by the Escherichia coli cytochrome c maturation (Ccm) apparatus. Biochem J 389:587–592

    Article  PubMed  CAS  Google Scholar 

  48. Stevens JM, Daltrop O, Allen JW et al (2004) C-type cytochrome formation: chemical and biological enigmas. Acc Chem Res 37:999–1007

    Article  PubMed  CAS  Google Scholar 

  49. Thony-Meyer L (2000) Haem-polypeptide interactions during cytochrome c maturation. Biochim Biophys Acta 1459:316–324

    Article  PubMed  CAS  Google Scholar 

  50. Praefcke GJ, McMahon HT (2004) The dynamin superfamily: universal membrane tubulation and fission molecules? Nat Rev Mol Cell Biol 5:133–147

    Article  PubMed  CAS  Google Scholar 

  51. Obar RA, Collins CA, Hammarback JA et al (1990) Molecular cloning of the microtubule-associated mechanochemical enzyme dynamin reveals homology with a new family of GTP-binding proteins. Nature 347:256–261

    Article  PubMed  CAS  Google Scholar 

  52. Shpetner HS, Vallee RB (1989) Identification of dynamin, a novel mechanochemical enzyme that mediates interactions between microtubules. Cell 59:421–432

    Article  PubMed  CAS  Google Scholar 

  53. Robinson PJ, Hauptschein R, Lovenberg W et al (1987) Dephosphorylation of synaptosomal ­proteins P96 and P139 is regulated by both ­depolarization and calcium, but not by a rise in cytosolic calcium alone. J Neurochem 48:187–195

    Article  PubMed  CAS  Google Scholar 

  54. van der Bliek AM (1999) Functional diversity in the dynamin family. Trends Cell Biol 9:96–102

    Article  PubMed  Google Scholar 

  55. Low HH, Lowe J (2006) A bacterial dynamin-like protein. Nature 444:766–769

    Article  PubMed  CAS  Google Scholar 

  56. Dever TE, Glynias MJ, Merrick WC (1987) GTP-binding domain: three consensus sequence elements with distinct spacing. Proc Natl Acad Sci USA 84:1814–1818

    Article  PubMed  CAS  Google Scholar 

  57. Nar H, Huber R, Heizmann CW et al (1994) Three-dimensional structure of 6-pyruvoyl tetrahydropterin synthase, an enzyme involved in tetrahydrobiopterin biosynthesis. EMBO J 13:1255–1262

    PubMed  CAS  Google Scholar 

  58. Makarova KS, Grishin NV (1999) The Zn-peptidase superfamily: functional convergence after evolutionary divergence. J Mol Biol 292:11–17

    Article  PubMed  CAS  Google Scholar 

  59. Kaul R, Gao GP, Balamurugan K et al (1993) Cloning of the human aspartoacylase cDNA and a common missense mutation in Canavan disease. Nat Genet 5:118–123

    Article  PubMed  CAS  Google Scholar 

  60. Kanehisa M, Araki M, Goto S et al (2008) KEGG for linking genomes to life and the environment. Nucleic Acids Res 36:D480–D484

    Article  PubMed  CAS  Google Scholar 

  61. Lauster R (1989) Evolution of type II DNA methyltransferases. A gene duplication model. J Mol Biol 206:313–321

    Article  PubMed  CAS  Google Scholar 

  62. Narva KE, Van Etten JL, Slatko BE et al (1988) The amino acid sequence of the eukaryotic DNA [N6-adenine]methyltransferase, M.CviBIII, has regions of similarity with the prokaryotic isoschizomer M.TaqI and other DNA [N6-adenine] methyltransferases. Gene 74:253–259

    Article  PubMed  CAS  Google Scholar 

  63. Timinskas A, Butkus V, Janulaitis A (1995) Sequence motifs characteristic for DNA [cytosine-N4] and DNA [adenine-N6] methyltransferases. Classification of all DNA methyltransferases. Gene 157:3–11

    Article  PubMed  CAS  Google Scholar 

  64. Bork P, Sander C, Valencia A (1992) An ATPase domain common to prokaryotic cell cycle proteins, sugar kinases, actin, and hsp70 heat shock proteins. Proc Natl Acad Sci USA 89:7290–7294

    Article  PubMed  CAS  Google Scholar 

  65. Bork P, Sander C, Valencia A (1993) Convergent evolution of similar enzymatic function on different protein folds: the hexokinase, ribokinase, and galactokinase families of sugar kinases. Protein Sci 2:31–40

    Article  PubMed  CAS  Google Scholar 

  66. Andreassi JL 2nd, Leyh TS (2004) Molecular functions of conserved aspects of the GHMP kinase family. Biochemistry 43:14594–14601

    Article  PubMed  CAS  Google Scholar 

  67. Zhou T, Daugherty M, Grishin NV et al (2000) Structure and mechanism of homoserine kinase: prototype for the GHMP kinase superfamily. Structure 8:1247–1257

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Microsoft Corporation (Redmond, WA).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Tyagi, N., Srinivasan, N. (2013). Recognition of Nontrivial Remote Homology Relationships Involving Proteins of Helicobacter pylori: Implications for Function Recognition. In: Kortagere, S. (eds) In Silico Models for Drug Discovery. Methods in Molecular Biology, vol 993. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-342-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-342-8_11

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-341-1

  • Online ISBN: 978-1-62703-342-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics