Skip to main content

The Role of the Vessel Wall

  • Protocol
  • First Online:
  • 6050 Accesses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 992))

Abstract

The role of the vessel wall is complex and its effects are wide-ranging. The vessel wall, specifically the endothelial monolayer that lines the inner lumen, possesses the ability to influence various physiological states both locally and systemically by controlling vascular tone, basement membrane component synthesis, angiogenesis, haemostatic properties, and immunogenicity. This is an overview of the function and structure of the vessel wall and how disruption and dysfunction in any of these regulatory roles can lead to disease states.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Rubanyi GM, Romero JC, Vanhoutte PM (1986) Flow-induced release of endothelium-derived relaxing factor. Am J Physiol 250:H1145–H1149

    PubMed  CAS  Google Scholar 

  2. Klinger JR (2007) The nitric oxide/cGMP signaling pathway in pulmonary hypertension. Clin Chest Med 28:143–167

    Article  PubMed  Google Scholar 

  3. Vanhoutte PM (1991) Hypercholesterolaemia, atherosclerosis and release of endothelium-derived relaxing factor by aggregating platelets. Eur Heart J 12:25–32

    Article  PubMed  CAS  Google Scholar 

  4. Vanhoutte PM, Boulanger CM, Mombouli JV (1995) Endothelium-derived relaxing factors and converting enzyme inhibition. Am J Cardiol 76:3E–12E

    Article  PubMed  CAS  Google Scholar 

  5. Shimokawa H, Vanhoutte PM (1989) Impaired endothelium-dependent relaxation to aggregating platelets and related vasoactive substances in porcine coronary arteries in hypercholesterolemia and atherosclerosis. Circ Res 64:900–914

    Article  PubMed  CAS  Google Scholar 

  6. Panza JA, Quyyumi AA, Brush JE Jr, Epstein SE (1990) Abnormal endothelium-dependent vascular relaxation in patients with essential hypertension. N Engl J Med 323:22–27

    Article  PubMed  CAS  Google Scholar 

  7. Panza JA, Casino PR, Kilcoyne CM, Quyyumi AA (1993) Role of endothelium-derived nitric oxide in the abnormal endothelium-dependent vascular relaxation of patients with essential hypertension. Circulation 87:1468–1474

    Article  PubMed  CAS  Google Scholar 

  8. Shimokawa H, Aarhus LL, Vanhoutte PM (1987) Porcine coronary arteries with regenerated endothelium have a reduced endothelium-dependent responsiveness to aggregating platelets and serotonin. Circ Res 61:256–270

    Article  PubMed  CAS  Google Scholar 

  9. Shimokawa H, Vanhoutte PM (1991) Angiographic demonstration of hyperconstriction induced by serotonin and aggregating platelets in porcine coronary arteries with regenerated endothelium. J Am Coll Cardiol 17:1197–1202

    Article  PubMed  CAS  Google Scholar 

  10. Palmer RM, Rees DD, Ashton DS, Moncada S (1988) L-arginine is the physiological precursor for the formation of nitric oxide in endothelium-dependent relaxation. Biochem Biophys Res Commun 153:1251–1256

    Article  PubMed  CAS  Google Scholar 

  11. Moncada S, Palmer RM, Higgs EA (1991) Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 43:109–142

    PubMed  CAS  Google Scholar 

  12. Moncada S, Higgs EA (2006) Nitric oxide and the vascular endothelium. Handb Exp Pharmacol 176:213–254

    Article  PubMed  Google Scholar 

  13. Rapoport RM, Murad E (1983) Endothelium-dependent and nitrovasodilator-induced relaxation of vascular smooth muscle: role of cyclic GMP. J Cyclic Nucleotide Protein Phosphor Res 9:281–296

    PubMed  CAS  Google Scholar 

  14. Palmer RM, Ferrige AG, Moncada S (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327:524–526

    Article  PubMed  CAS  Google Scholar 

  15. Hermann M (2006) Cyclooxygenase-2 and nitric oxide. J Cardiovasc Pharmacol 47:S21–S25

    Article  PubMed  CAS  Google Scholar 

  16. Rees DD, Palmer RM, Moncada S (2007) Role of endothelium-derived nitric oxide in the regulation of blood pressure. Proc Natl Acad Sci U S A 86:3375–3378

    Article  Google Scholar 

  17. Scott-Burden T, Vanhoutte PM (1994) Regulation of smooth muscle cell growth by endothelium-derived factors. Tex Heart Inst J 21:91–97

    PubMed  CAS  Google Scholar 

  18. Desjardins F, Balligand JL (2006) Nitric oxide-dependent endothelial function and cardiovascular disease. Acta Clin Belg 61:326–334

    PubMed  CAS  Google Scholar 

  19. Bunting S, Gryglewski R, Moncada S, Vane JR (1976) Arterial walls generate from prostaglandin endoperoxides a substance (prostaglandin X) which relaxes strips of mesenteric and coeliac arteries and inhibits platelet aggregation. Prostaglandins 12:897–913

    Article  PubMed  CAS  Google Scholar 

  20. Weksler BB, Marcus AJ, Jaffe EA (1977) Synthesis of prostaglandin I2 (prostacyclin) by cultured human and bovine endothelial cells. Proc Natl Acad Sci U S A 74:3922–3926

    Article  PubMed  CAS  Google Scholar 

  21. Radomski MW, Palmer RM, Moncada S (1987) Comparative pharmacology of endothelium-derived relaxing factor, nitric oxide and prostacyclin in platelets. Br J Pharmacol 92:181–187

    Article  PubMed  CAS  Google Scholar 

  22. Weksler BB, Ley CW, Jaffe EA (1978) Stimulation of endothelial cell prostacyclin production by thrombin, trypsin, and the ionophore A 23187. J Clin Invest 62:923–930

    Article  PubMed  CAS  Google Scholar 

  23. Hong SL (1980) Effect of bradykinin and thrombin on prostacyclin synthesis in endothelial cells from calf and pig aorta and human umbilical cord vein. Thromb Res 18:787–795

    Article  PubMed  CAS  Google Scholar 

  24. Baenziger NL, Force LE, Becherer PR (1980) Histamine stimulate prostacyclin synthesis in cultured human umbilical vein endothelial cells. Biochem Biophys Res Commun 92:1435–1440

    Article  PubMed  CAS  Google Scholar 

  25. Grabowski EF, Jaffe EA, Weksler BB (1985) Prostacyclin production by cultured endothelial cell monolayers exposed to step increases in shear stress. J Lab Clin Med 105:36–43

    PubMed  CAS  Google Scholar 

  26. de Wit C, Wölfle SE (2007) EDHF and gap junctions: important regulators of vascular tone within the microcirculation. Curr Pharm Biotechnol 8:11–25

    Article  PubMed  Google Scholar 

  27. Feletou M, Vanhoutte PM (1988) Endothelium-dependent hyperpolarization of canine coronary smooth muscle. Br J Pharmacol 93:515–524

    Article  PubMed  CAS  Google Scholar 

  28. Komori K, Vanhoutte PM (1990) Endothelium-derived hyperpolarizing factor. Blood Vessels 27:238–245

    PubMed  CAS  Google Scholar 

  29. Nagao T, Vanhoutte PM (1993) Endo-thelium-derived hyperpolarizing factor and endothelium-dependent relaxations. Am J Respir Cell Mol Biol 8:1–6

    PubMed  CAS  Google Scholar 

  30. Vanhoutte PM, Feletou M, Taddei S (2005) Endothelium-dependent contractions in hypertension. Br J Pharmacol 144:449–458

    Article  PubMed  CAS  Google Scholar 

  31. Hickey KA, Rubanyi G, Paul RJ, Highsmith RF (1985) Characterization of a coronary vasoconstrictor produced by cultured endothelial cells. Am J Physiol 248:C550–C556

    PubMed  CAS  Google Scholar 

  32. Gillespie MN, Owasoyo JO, McMurtry IF, O’Brien RF (1986) Sustained coronary vasoconstriction provoked by a peptidergic substance released from endothelial cells in culture. J Pharmacol Exp Ther 236:339–343

    PubMed  CAS  Google Scholar 

  33. Bloch KD, Eddy RL, Shows TB, Quertermous T (1989) cDNA cloning and chromosomal assignment of the gene encoding endothelin 3. J Biol Chem 264:18156–18161

    PubMed  CAS  Google Scholar 

  34. Sakurai T, Yanagisawa M, Inoue A, Ryan US, Kimura S, Mitsui Y, Goto K, Masaki T (1991) cDNA cloning, sequence analysis and tissue distribution of rat preproendothelin-1 mRNA. Biochem Biophys Res Commun 175:44–47

    Article  PubMed  CAS  Google Scholar 

  35. Graf J, Ogle RC, Robey FA, Sasaki M, Martin GR, Yamada Y, Kleinman HK (1987) A pentapeptide from the laminin B1 chain mediates cell adhesion and binds the 67,000 laminin receptor. Biochemistry 26:6896–6900

    Article  PubMed  CAS  Google Scholar 

  36. Russell FD, Skepper JN, Davenport AP (1998) Evidence using immunoelectron microscopy for regulated and constitutive pathways in the transport and release of endothelin. J Cardiovasc Pharmacol 31:424–430

    Article  PubMed  CAS  Google Scholar 

  37. Rondaij MG, Bierings R, Kragt A, van Mourik JA, Voorberg J (2006) Dynamics and plasticity of Weibel-Palade bodies in endothelial cells. Arterioscler Thromb Vasc Biol 26:1002–1007

    Article  PubMed  CAS  Google Scholar 

  38. Russell FD, Skepper JN, Davenport AP (1998) Human endothelial cell storage granules: a novel intracellular site for isoforms of the endothelin-converting enzyme. Circ Res 83:314–321

    Article  PubMed  CAS  Google Scholar 

  39. Bousette N, Giaid A (2003) Endothelin-1 in atherosclerosis and other vasculopathies. Can J Physiol Pharmacol 81:578–587

    Article  PubMed  CAS  Google Scholar 

  40. Marasciulo FL, Montagnani M, Potenza MA (2006) Endothelin-1: the yin and yang on vascular function. Curr Med Chem 13:1655–1665

    Article  PubMed  CAS  Google Scholar 

  41. Boulanger C, Lüscher TF (1990) Release of endothelin from the porcine aorta. Inhibition by endothelium-derived nitric oxide. J Clin Invest 85:587–590

    Article  PubMed  CAS  Google Scholar 

  42. Kohno M, Yokokawa K, Horio T, Yasunari K, Murakawa K, Takeda T (1992) Atrial and brain natriuretic peptides inhibit the endothelin-1 secretory response to angiotensin II in porcine aorta. Circ Res 70:241–247

    Article  PubMed  CAS  Google Scholar 

  43. Emori T, Hirata Y, Imai T, Eguchi S, Kanno K, Marumo F (1993) Cellular mechanism of natriuretic peptides-induced inhibition of endothelin-1 biosynthesis in rat endothelial cells. Endocrinology 133:2474–2480

    Article  PubMed  CAS  Google Scholar 

  44. Imai T, Hirata Y, Emori T, Marumo F (1993) Heparin has an inhibitory effect on endothelin-1 synthesis and release by endothelial cells. Hypertension 21:353–358

    Article  PubMed  CAS  Google Scholar 

  45. Yokokawa K, Tahara H, Kohno M, Mandal AK, Yanagisawa M, Takeda T (1993) Heparin regulates endothelin production through endothelium-derived nitric oxide in human endothelial cells. J Clin Invest 92:2080–2085

    Article  PubMed  CAS  Google Scholar 

  46. Prins BA, Hu RM, Nazario B, Pedram A, Frank HJ, Weber MA, Levin ER (1994) Prostaglandin E2 and prostacyclin inhibit the production and secretion of endothelin from cultured endothelial cells. J Biol Chem 269:11938–11944

    PubMed  CAS  Google Scholar 

  47. Toda M, Yamamoto K, Shimizu N, Obi S, Kumagaya S, Igarashi T, Kamiya A, Ando J (2008) Differential gene responses in endothelial cells exposed to a combination of shear stress and cyclic stretch. J Biotechnol 133:239–244

    Article  PubMed  CAS  Google Scholar 

  48. Busse R, Fleming I (2006) Vascular endothelium and blood flow. Handb Exp Pharmacol (176 Pt 2):43–78

    Google Scholar 

  49. Wagner OF, Christ G, Wojta J, Vierhapper H, Parzer S, Nowotny PJ, Schneider B, Waldhäusl W, Binder BR (1992) Polar secretion of endothelin-1 by cultured endothelial cells. J Biol Chem 267:16066–16068

    PubMed  CAS  Google Scholar 

  50. Hosoda K, Nakao K, Hiroshi-Arai, Suga S, Ogawa Y, Mukoyama M, Shirakami G, Saito Y, Nakanishi S, Imura H (1991) Cloning and expression of human endothelin-1 receptor cDNA. FEBS Lett 287:23–26

    Article  PubMed  CAS  Google Scholar 

  51. Warner TD, Allcock GH, Corder R, Vane JR (1993) Use of the endothelin antagonists BQ-123 and PD 142893 to reveal three endothelin receptors mediating smooth muscle contraction and the release of EDRF. Br J Pharmacol 110:777–782

    Article  PubMed  CAS  Google Scholar 

  52. Sumner MJ, Cannon TR, Mundin JW, White DG, Watts IS (1992) Endothelin ETA and ETB receptors mediate vascular smooth muscle contraction. Br J Pharmacol 107:858–860

    Article  PubMed  CAS  Google Scholar 

  53. Moreland S, McMullen DM, Delaney CL, Lee VG, Hunt JT (1992) Venous smooth muscle contains vasoconstrictor ETB-like receptors. Biochem Biophys Res Commun 184:100–106

    Article  PubMed  CAS  Google Scholar 

  54. Sudjarwo SA, Hori M, Takai M, Urade Y, Okada T, Karaki H (1993) A novel subtype of endothelin B receptor mediating contraction in swine pulmonary vein. Life Sci 53:431–437

    Article  PubMed  CAS  Google Scholar 

  55. Schiffrin EL (1995) Endothelin: potential role in hypertension and vascular hypertrophy. Hypertension 25:1135–1143

    Article  PubMed  CAS  Google Scholar 

  56. Schiffrin EL, Deng LY, Sventek P, Day R (1997) Enhanced expression of endothelin-1 gene in resistance arteries in severe human essential hypertension. J Hypertens 15:57–63

    Article  PubMed  CAS  Google Scholar 

  57. Taylor RN, Varma M, Teng NN, Roberts JM (1990) Women with preeclampsia have higher plasma endothelin levels than women with normal pregnancies. J Clin Endocrinol Metab 71:1675–1677

    Article  PubMed  CAS  Google Scholar 

  58. Clark BA, Halvorson L, Sachs B, Epstein FH (1992) Plasma endothelin levels in preeclampsia: elevation and correlation with uric acid levels and renal impairment. Am J Obstet Gynecol 166:962–968

    PubMed  CAS  Google Scholar 

  59. Kon V, Sugiura M, Inagami T, Harvie BR, Ichikawa I, Hoover RL (1990) Role of endothelin in cyclosporine-induced glomerular dysfunction. Kidney Int 37:1487–1491

    Article  PubMed  CAS  Google Scholar 

  60. Kaddoura S, Curzen NP, Evans TW, Firth JD, Poole-Wilson PA (1996) Tissue expression of endothelin-1 mRNA in endotoxaemia. Biochem Biophys Res Commun 218:641–647

    Article  PubMed  CAS  Google Scholar 

  61. Golfman LS, Hata T, Beamish RE, Dhalla NS (1993) Role of endothelin in heart function in health and disease. Can J Cardiol 9:635–653

    PubMed  CAS  Google Scholar 

  62. Hirata Y, Takagi Y, Fukada Y, Marumo F (1989) Endothelin is a potent mitogen for rat vascular smooth muscle cells. Atherosclerosis 78:225–228

    Article  PubMed  CAS  Google Scholar 

  63. Bobik A, Grooms A, Millar JA, Mitchell A, Grinpukel S (1990) Growth factor activity of endothelin on vascular smooth muscle. Am J Physiol 258:C408–C415

    PubMed  CAS  Google Scholar 

  64. Brown MJ (2007) Renin: friend or foe? Heart 93:1026–1033

    Article  PubMed  CAS  Google Scholar 

  65. Weir MR, Dzau VJ (1999) The renin-angiotensin-aldosterone system: a specific target for hypertension management. Am J Hypertens 12:205S–213S

    Article  PubMed  CAS  Google Scholar 

  66. Volpe M, Savoia C, De Paolis P, Ostrowska B, Tarasi D, Rubattu S (2002) The renin-angiotensin system as a risk factor and therapeutic target for cardiovascular and renal disease. J Am Soc Nephrol 13:S173–S178

    Article  PubMed  CAS  Google Scholar 

  67. Brewster UC, Setaro JF, Perazella MA (2003) The renin-angiotensin-aldosterone system: cardiorenal effects and implications for renal and cardiovascular disease states. Am J Med Sci 326:15–24

    Article  PubMed  Google Scholar 

  68. Faraci FM (2006) Reactive oxygen species: influence on cerebral vascular tone. J Appl Physiol 100:739–743

    Article  PubMed  CAS  Google Scholar 

  69. Madamanchi NR, Vendrov A, Runge MS (2005) Oxidative stress and vascular disease. Arterioscler Thromb Vasc Biol 25:29–38

    Article  PubMed  CAS  Google Scholar 

  70. Mueller CF, Laude K, McNally JS, Harrison DG (2005) ATVB in focus: redox mechanisms in blood vessels. Arterioscler Thromb Vasc Biol 25:274–278

    Article  PubMed  CAS  Google Scholar 

  71. Didion SP, Faraci FM (2002) Effects of NADH and NADPH on superoxide levels and cerebral vascular tone. Am J Physiol Heart Circ Physiol 282:H688–H695

    PubMed  CAS  Google Scholar 

  72. Faraci FM, Heistad DD (1998) Regulation of the cerebral circulation: role of endothelium and potassium channels. Physiol Rev 78:53–97

    PubMed  CAS  Google Scholar 

  73. Edelman DA, Jiang Y, Tyburski J, Wilson RF, Steffes C (2006) Pericytes and their role in microvasculature homeostasis. J Surg Res 135:305–311

    Article  PubMed  CAS  Google Scholar 

  74. Yamagishi S, Imaizumi T (2005) Pericyte biology and diseases. Int J Tissue React 27:125–135

    PubMed  CAS  Google Scholar 

  75. Paulsson M (1992) Basement membrane proteins: structure, assembly, and cellular interactions. Crit Rev Biochem Mol Biol 27:93–127

    Article  PubMed  CAS  Google Scholar 

  76. Hudson BG, Reeders ST, Tryggvason K (1993) Type IV collagen: structure, gene organization, and role in human diseases. Molecular basis of Goodpasture and Alport syndromes and diffuse leiomyomatosis. J Biol Chem 268:26033–26036

    PubMed  CAS  Google Scholar 

  77. Colognato H, Yurchenco PD (2000) Form and function: the laminin family of heterotrimers. Dev Dyn 218:213–234

    Article  PubMed  CAS  Google Scholar 

  78. Vracko R, Benditt EP (1972) Basal lamina: the scaffold for orderly cell replacement. Observations on regeneration of injured skeletal muscle fibers and capillaries. J Cell Biol 55:406–419

    Article  PubMed  CAS  Google Scholar 

  79. Vracko R (1974) Basal lamina scaffold-anatomy and significance for maintenance of orderly tissue structure. Am J Pathol 77:314–346

    PubMed  CAS  Google Scholar 

  80. Timpl R (1989) Structure and biological activity of basement membrane proteins. Eur J Biochem 180:487–502

    Article  PubMed  CAS  Google Scholar 

  81. Schittny JC, Yurchenco PD (1989) Basement membranes: molecular organization and function in development and disease. Curr Opin Cell Biol 1:983–988

    Article  PubMed  CAS  Google Scholar 

  82. Yurchenco PD, Schittny JC (1990) Molecular architecture of basement membranes. FASEB J 4:1577–1590

    PubMed  CAS  Google Scholar 

  83. Cheng YS, Champliaud MF, Burgeson RE, Marinkovich MP, Yurchenco PD (1997) Self-assembly of laminin isoforms. J Biol Chem 272:31525–31532

    Article  PubMed  CAS  Google Scholar 

  84. Prockop DJ, Kivirikko KI (1995) Collagens: molecular biology, diseases, and potentials for therapy. Annu Rev Biochem 64:403–434

    Article  PubMed  CAS  Google Scholar 

  85. Kalluri R (2003) Basement membranes: structure, assembly and role in tumour angiogenesis. Nat Rev Cancer 3:422–433

    Article  PubMed  CAS  Google Scholar 

  86. Timpl R, Wiedemann H, van Delden V, Furthmayr H, Kühn K (1981) A network model for the organization of type IV collagen molecules in basement membranes. Eur J Biochem 120:203–211

    Article  PubMed  CAS  Google Scholar 

  87. Kühn K, Wiedemann H, Timpl R, Risteli J, Dieringer H, Voss T, Glanville RW (1981) Macromolecular structure of basement membrane collagens. FEBS Lett 125:123–128

    Article  PubMed  Google Scholar 

  88. Herbst TJ, McCarthy JB, Tsilibary EC, Furcht LT (1988) Differential effects of laminin, intact type IV collagen, and specific domains of type IV collagen on endothelial cell adhesion and migration. J Cell Biol 106:1365–1373

    Article  PubMed  CAS  Google Scholar 

  89. Ruoslahti E, Pierschbacher MD (1987) New perspectives in cell adhesion: RGD and integrins. Science 238:491–497

    Article  PubMed  CAS  Google Scholar 

  90. Kleinman HK, Cannon FB, Laurie GW, Hassell JR, Aumailley M, Terranova VP, Martin GR, DuBois-Dalcq M (1985) Biological activities of laminin. J Cell Biochem 27:317–325

    Article  PubMed  CAS  Google Scholar 

  91. Graf J, Iwamoto Y, Sasaki M, Martin GR, Kleinman HK, Robey FA, Yamada Y (1987) Identification of an amino acid sequence in laminin mediating cell attachment, chemotaxis, and receptor binding. Cell 48:989–996

    Article  PubMed  CAS  Google Scholar 

  92. Hassell JR, Robey FA, Barrach HJ, Wilczek J, Rennard SI, Martin GR (1980) Isolation of a heparan sulfate-containing proteoglycan from basement membrane. Proc Natl Acad Sci U S A 77:4494–4498

    Article  PubMed  CAS  Google Scholar 

  93. Kanwar YS, Jakubowski ML, Rosenzweig LJ (1983) Distribution of sulfated glycosaminoglycans in the glomerular basement membrane and mesangial matrix. Eur J Cell Biol 31:290–295

    PubMed  CAS  Google Scholar 

  94. Ledbetter SR, Fisher LW, Hassell JR (1987) Domain structure of the basement membrane heparan sulfate proteoglycan. Biochemistry 26:988–995

    Article  PubMed  CAS  Google Scholar 

  95. Madri JA, Williams SK (1983) Capillary endothelial cell cultures: phenotypic modulation by matrix components. J Cell Biol 97:153–165

    Article  PubMed  CAS  Google Scholar 

  96. Carley WW, Milici AJ, Madri JA (1988) Extracellular matrix specificity for the differentiation of capillary endothelial cells. Exp Cell Res 178:426–434

    Article  PubMed  CAS  Google Scholar 

  97. Kramer RH, Bensch KG, Davison PM, Krasek MA (1984) Basal lamina formation by cultured microvascular endothelial cells. J Cell Biol 99:692–698

    Article  PubMed  CAS  Google Scholar 

  98. Moscatelli D, Jaffe E, Rifkin DB (1980) Tetradecanoyl phorbol acetate stimulates latent collagenase production by cultured human endothelial cells. Cell 20:343–351

    Article  PubMed  CAS  Google Scholar 

  99. Gross JL, Moscatelli D, Jaffe E, Rifkin DB (1982) Plasminogen activator and collagenase production by cultured capillary endothelial cells. J Cell Biol 95:974–981

    Article  PubMed  CAS  Google Scholar 

  100. Kalebic T, Garbisa S, Glaser B, Liotta LA (1983) Basement membrane collagen: degradation by migrating endothelial cells. Science 221:281–283

    Article  PubMed  CAS  Google Scholar 

  101. Folkman J, Shing Y (1992) Angiogenesis. J Biol Chem 267:10931–10934

    PubMed  CAS  Google Scholar 

  102. Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407:249–257

    Article  PubMed  CAS  Google Scholar 

  103. Jain RK, Carmeliet PF (2001) Vessels of death or life. Sci Am 285:38–45

    Article  PubMed  CAS  Google Scholar 

  104. Xu J, Rodriguez D, Petitclerc E, Kim JJ, Hangai M, Moon YS, Davis GE, Brooks PC (2001) Proteolytic exposure of a cryptic site within collagen type IV is required for angiogenesis and tumor growth in vivo. J Cell Biol 154:1069–1079

    Article  PubMed  CAS  Google Scholar 

  105. Xu J, Rodriguez D, Kim JJ, Brooks PC (2000) Generation of monoclonal antibodies to cryptic collagen sites by using subtractive immunization. Hybridoma 19:375–385

    Article  PubMed  CAS  Google Scholar 

  106. Sheppard D (2000) In vivo functions of integrins: lessons from null mutations in mice. Matrix Biol 19:203–209

    Article  PubMed  CAS  Google Scholar 

  107. Hynes RO (2008) Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69:11–25

    Article  Google Scholar 

  108. Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110:673–687

    Article  PubMed  CAS  Google Scholar 

  109. Kuwano M, Fukushi J, Okamoto M, Nishie A, Goto H, Ishibashi T, Ono M (2001) Angiogenesis factors. Intern Med 40: 565–572

    Article  PubMed  CAS  Google Scholar 

  110. Lutsenko SV, Kiselev SM, Severin SE (2003) Molecular mechanisms of tumor angiogenesis. Biochemistry (Mosc) 68:286–300

    Article  CAS  Google Scholar 

  111. Battegay EJ (1995) Angiogenesis: mechanistic insights, neovascular diseases, and therapeutic prospects. J Mol Med 73: 333–346

    Article  PubMed  CAS  Google Scholar 

  112. Suhardja A, Hoffman H (2003) Role of growth factors and their receptors in proliferation of microvascular endothelial cells. Microsc Res Tech 60:70–75

    Article  PubMed  CAS  Google Scholar 

  113. Jones AV, Cross NC (2004) Oncogenic derivatives of platelet-derived growth factor receptors. Cell Mol Life Sci 61:2912–2923

    Article  PubMed  CAS  Google Scholar 

  114. Bernardini G, Ribatti D, Spinetti G, Morbidelli L, Ziche M, Santoni A, Capogrossi MC, Napolitano M (2003) Analysis of the role of chemokines in angiogenesis. J Immunol Methods 273:83–101

    Article  PubMed  CAS  Google Scholar 

  115. Eliceiri BP, Cheresh DA (2001) Adhesion events in angiogenesis. Curr Opin Cell Biol 13:563–568

    Article  PubMed  CAS  Google Scholar 

  116. Drake TA, Morrissey JH, Edgington TS (1989) Selective cellular expression of tissue factor in human tissues. Implications for disorders of hemostasis and thrombosis. Am J Pathol 134:1087–1097

    PubMed  CAS  Google Scholar 

  117. Fleck RA, Rao LV, Rapoport SI, Varki N (1990) Localization of human tissue factor antigen by immunostaining with monospecific, polyclonal anti-human tissue factor antibody. Thromb Res 59:421–437

    Article  PubMed  CAS  Google Scholar 

  118. Flössel C, Luther T, Müller M, Albrecht S, Kasper M (1994) Immunohistochemical detection of tissue factor (TF) on paraffin sections of routinely fixed human tissue. Histochemistry 101:449–453

    Article  PubMed  Google Scholar 

  119. Bouchard BA, Shatos MA, Tracy PB (1997) Human brain pericytes differentially regulate expression of procoagulant enzyme complexes comprising the extrinsic pathway of blood coagulation. Arterioscler Thromb Vasc Biol 17:1–9

    Article  PubMed  CAS  Google Scholar 

  120. Schecter AD, Spirn B, Rossikhina M, Giesen PL, Bogdanov V, Fallon JT, Fisher EA, Schnapp LM, Nemerson Y, Taubman MB (2000) Release of active tissue factor by human arterial smooth muscle cells. Circ Res 87:126–132

    Article  PubMed  CAS  Google Scholar 

  121. Hoffman M, Monroe DM, Oliver JA, Roberts HR (1995) Factors IXa and Xa play distinct roles in tissue factor-dependent initiation of coagulation. Blood 86:1794–1801

    PubMed  CAS  Google Scholar 

  122. Nemerson Y (1988) Tissue factor and hemostasis. Blood 71:1–8

    PubMed  CAS  Google Scholar 

  123. Kurachi K, Davie EW (1977) Activation of human factor XI (plasma thromboplastin antecedent) by factor XIIa (activated Hageman factor). Biochemistry 16:5831–5839

    Article  PubMed  CAS  Google Scholar 

  124. Nemerson Y (1966) The reaction between bovine brain tissue factor and factors VII and X. Biochemistry 5:601–608

    Article  PubMed  CAS  Google Scholar 

  125. Chen J, López JA (2005) Interactions of platelets with subendothelium and endothelium. Microcirculation 12:235–246

    Article  PubMed  CAS  Google Scholar 

  126. Coller BS, Beer JH, Scudder LE, Steinberg MH (1989) Collagen-platelet interactions: evidence for a direct interaction of collagen with platelet GPIa/IIa and an indirect interaction with platelet GPIIb/IIIa mediated by adhesive proteins. Blood 74:182–192

    PubMed  CAS  Google Scholar 

  127. Goto S, Tamura N, Handa S, Arai M, Kodama K, Takayama H (2002) Involvement of glycoprotein VI in platelet thrombus formation on both collagen and von Willebrand factor surfaces under flow conditions. Circulation 106:266–272

    Article  PubMed  CAS  Google Scholar 

  128. Massberg S, Gawaz M, Grüner S, Schulte V, Konrad I, Zohlnhöfer D, Heinzmann U, Nieswandt B (2003) A crucial role of glycoprotein VI for platelet recruitment to the injured arterial wall in vivo. J Exp Med 197:41–49

    Article  PubMed  CAS  Google Scholar 

  129. Wagner DD (1993) The Weibel-Palade body: the storage granule for von Willebrand factor and P-selectin. Thromb Haemost 70:105–110

    PubMed  CAS  Google Scholar 

  130. Wu YI, Sheffield WP, Blajchman MA (1994) Defining the heparin-binding domain of antithrombin. Blood Coagul Fibrinolysis 5:83–95

    Article  PubMed  CAS  Google Scholar 

  131. Jackson CM (1990) Mechanism of heparin action. Baillieres Clin Haematol 3:483–504

    Article  PubMed  CAS  Google Scholar 

  132. Casu B (1990) Heparin structure. Haemostasis 20:62–73

    PubMed  CAS  Google Scholar 

  133. Olds RJ, Lane DA, Mille B, Chowdhury V, Thein SL (1994) Antithrombin: the principal inhibitor of thrombin. Semin Thromb Hemost 20:353–372

    Article  PubMed  CAS  Google Scholar 

  134. Rosenberg JS, McKenna PW, Rosenberg RD (1975) Inhibition of human factor IXa by human antithrombin. J Biol Chem 250:8883–8888

    PubMed  CAS  Google Scholar 

  135. Stead N, Kaplan AP, Rosenberg RD (1976) Inhibition of activated factor XII by antithrombin-heparin cofactor. J Biol Chem 251:6481–6488

    PubMed  CAS  Google Scholar 

  136. Damus PS, Hicks M, Rosenberg RD (1973) Anticoagulant action of heparin. Nature 246:355–357

    Article  PubMed  CAS  Google Scholar 

  137. Rao LV, Nordfang O, Hoang AD, Pendurthi UR (1995) Mechanism of antithrombin III inhibition of factor VIIa/tissue factor activity on cell surfaces. Comparison with tissue factor pathway inhibitor/factor Xa-induced inhibition of factor VIIa/tissue factor activity. Blood 85:121–129

    PubMed  CAS  Google Scholar 

  138. Okajima K, Uchiba M (1998) The anti-inflammatory properties of antithrombin III: new therapeutic implications. Semin Thromb Hemost 24:27–32

    Article  PubMed  CAS  Google Scholar 

  139. Dunzendorfer S, Kaneider N, Rabensteiner A, Meierhofer C, Reinisch C, Römisch J, Wiedermann CJ (2001) Cell-surface heparan sulfate proteoglycan-mediated regulation of human neutrophil migration by the serpin antithrombin III. Blood 97:1079–1085

    Article  PubMed  CAS  Google Scholar 

  140. Hoffmann JN, Vollmar B, Römisch J, Inthorn D, Schildberg FW, Menger MD (2002) Antithrombin effects on endotoxin-induced microcirculatory disorders are mediated mainly by its interaction with microvascular endothelium. Crit Care Med 30:215–225

    Google Scholar 

  141. Souter PJ, Thomas S, Hubbard AR, Poole S, Römisch J, Gray E (2001) Antithrombin inhibits lipopolysaccharide-induced tissue factor and interleukin-6 production by mononuclear cells, human umbilical vein endothelial cells, and whole blood. Crit Care Med 29:134–139

    Article  PubMed  CAS  Google Scholar 

  142. Oelschläger C, Römisch J, Staubitz A, Stauss H, Leithäuser B, Tillmanns H, Hölschermann H (2002) Antithrombin III inhibits nuclear factor kappaB activation in human monocytes and vascular endothelial cells. Blood 99:4015–4020

    Article  PubMed  Google Scholar 

  143. Zuo XJ, Nicolaidou E, Okada Y, Toyoda M, Jordan SC (2001) Antithrombin III inhibits lymphocyte proliferation, immunoglobulin production and mRNA expression of lymphocyte growth factors (IL-2, gamma-IFN and IL-4) in vitro. Transpl Immunol 9:1–6

    Article  PubMed  CAS  Google Scholar 

  144. Esmon CT (2003) The protein C pathway. Chest 124:26S–32S

    Article  PubMed  CAS  Google Scholar 

  145. Weiler H, Isermann BH (2003) Thrombomodulin. J Thromb Haemost 1:1515–1524

    Article  PubMed  CAS  Google Scholar 

  146. Van de Wouwer M, Collen D, Conway EM (2004) Thrombomodulin-protein C-EPCR system: integrated to regulate coagulation and inflammation. Arterioscler Thromb Vasc Biol 24:1374–1383

    Article  PubMed  CAS  Google Scholar 

  147. Esmon CT (2000) The endothelial cell protein C receptor. Thromb Haemost 83:639–643

    PubMed  CAS  Google Scholar 

  148. Nicolaes GA, Dahlbäck B (2002) Factor V and thrombotic disease: description of a janus-faced protein. Arterioscler Thromb Vasc Biol 22:530–538

    Article  PubMed  CAS  Google Scholar 

  149. Pescatore SL (2001) Clinical management of protein C deficiency. Expert Opin Pharmacother 2:431–439

    Article  PubMed  CAS  Google Scholar 

  150. Nizzi FA Jr, Kaplan HS (1999) Protein C and S deficiency. Semin Thromb Hemost 25:265–272

    Article  PubMed  CAS  Google Scholar 

  151. Broze GJ Jr, Warren LA, Novotny WF, Higuchi DA, Girard JJ, Miletich JP (1988) The lipoprotein-associated coagulation inhibitor that inhibits the factor VII-tissue factor complex also inhibits factor Xa: insight into its possible mechanism of action. Blood 71:335–343

    PubMed  CAS  Google Scholar 

  152. Piro O, Broze GJ Jr (2004) Role for the Kunitz-3 domain of tissue factor pathway inhibitor-alpha in cell surface binding. Circulation 110:3567–3572

    Article  PubMed  CAS  Google Scholar 

  153. Sandset PM (1996) Tissue factor pathway inhibitor (TFPI)—an update. Haemostasis 26:156–165

    Google Scholar 

  154. Girard TJ, Warren LA, Novotny WF, Likert KM, Brown SG, Miletich JP, Broze GJ Jr (1989) Functional significance of the Kunitz-type inhibitory domains of lipoprotein-­associated coagulation inhibitor. Nature 338:518–520

    Article  PubMed  CAS  Google Scholar 

  155. Broze GJ Jr (1995) Tissue factor pathway inhibitor. Thromb Haemost 74:90–93

    PubMed  CAS  Google Scholar 

  156. Lindahl AK (1997) Tissue factor pathway inhibitor: from unknown coagulation inhibitor to major antithrombotic principle. Cardiovasc Res 33:286–291

    Article  PubMed  CAS  Google Scholar 

  157. Bachmann F (2001) Plasminogen-plasmin enzyme system. In: Colman RW, Hirsh J, Marder VJ, Clowes AW, George JN (eds) Hemostasis and thrombosis: basic principles and clinical practice. Lippincott Williams & Wilkins, Philadelphia, PA, pp 275–320

    Google Scholar 

  158. Collen D, Lijnen HR (1991) Basic and clinical aspects of fibrinolysis and thrombolysis. Blood 78:3114–3124

    PubMed  CAS  Google Scholar 

  159. Medved L, Tsurupa G, Yakovlev S (2008) Conformational changes upon conversion of fibrinogen into fibrin. The mechanisms of exposure of cryptic sites. Ann N Y Acad Sci 936:185–204

    Article  Google Scholar 

  160. Binder BR, Mihaly J, Prager GW (2007) uPAR-uPA-PAI-1 interactions and signaling: a vascular biologist’s view. Thromb Haemost 97:336–342

    PubMed  CAS  Google Scholar 

  161. Binder BR, Christ G, Gruber F, Grubic N, Hufnagl P, Krebs M, Mihaly J, Prager GW (2002) Plasminogen activator inhibitor 1: physiological and pathophysiological roles. News Physiol Sci 17:56–61

    PubMed  CAS  Google Scholar 

  162. Bouma BN, Mosnier LO (2006) Thrombin activatable fibrinolysis inhibitor (TAFI)—how does thrombin regulate fibrinolysis? Ann Med 38:378–388

    Article  PubMed  CAS  Google Scholar 

  163. Bouma BN, Meijers JC (2003) Thrombin-activatable fibrinolysis inhibitor (TAFI, plasma procarboxypeptidase B, procarboxypeptidase R, procarboxypeptidase U). J Thromb Haemost 1:1566–1574

    Article  PubMed  CAS  Google Scholar 

  164. Bajzar L (2000) Thrombin activatable fibrinolysis inhibitor and an antifibrinolytic pathway. Arterioscler Thromb Vasc Biol 20:2511–2518

    Article  PubMed  CAS  Google Scholar 

  165. van Tilburg NH, Rosendaal FR, Bertina RM (2000) Thrombin activatable fibrinolysis inhibitor and the risk for deep vein thrombosis. Blood 95:2855–2859

    PubMed  Google Scholar 

  166. Methe H, Hess S, Edelman ER (2007) Endothelial immunogenicity—a matter of matrix microarchitecture. Thromb Haemost 98:278–282

    PubMed  CAS  Google Scholar 

  167. Anderson TJ (2008) Assessment and treatment of endothelial dysfunction in humans. J Am Coll Cardiol 34:631–638

    Article  Google Scholar 

  168. Libby P (2002) Inflammation in atherosclerosis. Nature 420:868–874

    Article  PubMed  CAS  Google Scholar 

  169. Ross R (1999) Atherosclerosis—an infla-mmatory disease. N Engl J Med 340: 115–126

    Article  PubMed  CAS  Google Scholar 

  170. Methe H, Edelman ER (2006) Tissue engineering of endothelial cells and the immune response. Transplant Proc 38:3293–3299

    Article  PubMed  CAS  Google Scholar 

  171. Turesson C (2004) Endothelial expression of MHC class II molecules in autoimmune disease. Curr Pharm Des 10:129–143

    Article  PubMed  CAS  Google Scholar 

  172. Rose ML (1997) Role of endothelial cells in allograft rejection. Vasc Med 2:105–114

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Anthony Chan is supported by the Bayer Thrombosis and Haemostasis Research Grant.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Humana Press

About this protocol

Cite this protocol

Paredes, N., Chan, A.K.C. (2013). The Role of the Vessel Wall. In: Monagle, P. (eds) Haemostasis. Methods in Molecular Biology, vol 992. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-339-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-339-8_3

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-338-1

  • Online ISBN: 978-1-62703-339-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics