Skip to main content

Separation Science: Principles and Applications for the Analysis of Bionanoparticles by Asymmetrical Flow Field-Flow Fractionation (AF4)

  • Protocol
  • First Online:
Cellular and Subcellular Nanotechnology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 991))

Abstract

Field-flow fractionation is an analytical technique that allows the separation of particles over a size range, from a few nanometers to several microns in diameter. The separation takes place under mild conditions and is suited for the analysis of neutral or charged particles. A single measurement yields the size and concentration of each component of a mixture. However, developing a suitable fractionation method can be tedious and time-consuming. In this chapter, we present asymmetrical flow field-flow fractionation (AF4) conditions that have proven their reliability for the analysis of quantum dots and other nanoparticles in the 5–50 nm size range. Common pitfalls are emphasized together with strategies to overcome them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Giddings JC (1966) A new separation concept based on a coupling of concentration and flow nonuniformities. Separation Sci 1(1):123–125

    Article  CAS  Google Scholar 

  2. Giddings JC (1989) Field-flow fractionation of macromolecules. J Chromatogr 470(2):327–35

    Article  CAS  Google Scholar 

  3. Giddings JC et al (1980) Analysis of biological macromolecules and particles by field-flow fractionation. Methods Biochem Anal 26:79–136

    Article  CAS  Google Scholar 

  4. Schimpf ME, Caldwell K, Giddings JC (2000) Field flow fractionation handbook, vol xviii. Wiley-Interscience, New York, p 592

    Google Scholar 

  5. Thompson GH, Myers MN, Giddings JC (1969) Thermal field-flow fractionation of polystyrene samples. Anal Chem 41(10):1219–1222

    Article  CAS  Google Scholar 

  6. Giddings JC, Yang FJF, Myers MN (1974) Sedimentation field-flow fractionation. Anal Chem 46(13):1917–1924

    Article  CAS  Google Scholar 

  7. Caldwell KD, Gao YS (1993) Electrical field-flow fractionation in particle separation. 1. Monodisperse standards. Anal Chem 65(13):1764–1772

    Article  CAS  Google Scholar 

  8. Giddings JC, Yang FJ, Myers MN (1976) Flow-field-flow fractionation: a versatile new separation method. Science 193(4259):1244–1245

    Article  CAS  Google Scholar 

  9. Vickrey TM, Garcia-ramirez JA (1980) Magnetic field-flow fractionation: theoretical basis. Sep Sci Technol 15(6):1297–1304

    Article  CAS  Google Scholar 

  10. Wahlund KG, Giddings JC (1987) Properties of an asymmetrical flow field-flow fractionation channel having one permeable wall. Anal Chem 59(9):1332–1339

    Article  CAS  Google Scholar 

  11. Wahlund KG, Litzen A (1989) Application of an asymmetrical flow field-flow fractionation channel to the separation and characterization of proteins, plasmids, plasmid fragments, polysaccharides and unicellular algae. J Chromatogr 461:73–87

    Article  CAS  Google Scholar 

  12. Fraunhofer W, Winter G (2004) The use of asymmetrical flow field-flow fractionation in pharmaceutics and biopharmaceutics. Eur J Pharm Biopharm 58(2):369–383

    Article  CAS  Google Scholar 

  13. Weers JG, Arlauskas RA (2004) Particle size analysis of perfluorocarbon emulsions in a complex whole blood matrix by sedimentation field-flow fractionation. Colloids Surf B Biointerfaces 33(3–4):265–269

    Article  CAS  Google Scholar 

  14. Pinaud F et al (2010) Probing cellular events, one quantum dot at a time. Nat Methods 7(4):275–285

    Article  CAS  Google Scholar 

  15. Maysinger D, Lovric J (2007) Quantum dots and other fluorescent nanoparticles: quo vadis in the cell? Adv Exp Med Biol 620:156–167

    Article  Google Scholar 

  16. Pierobon P, Cappello G (2011) Quantum dots to tail single bio-molecules inside living cells. Adv Drug Deliv Rev 64(2):167–178

    Article  Google Scholar 

  17. Huang HC et al (2011) Inorganic nanoparticles for cancer imaging and therapy. J Control Release 155(3):344–357

    Article  CAS  Google Scholar 

  18. Mahmoudi M, Serpooshan V, Laurent SS (2011) Engineered nanoparticles for biomolecular imaging. Nanoscale 3(8):3007–3026

    Article  CAS  Google Scholar 

  19. Algar WR et al (2011) The controlled display of biomolecules on nanoparticles: a challenge suited to bioorthogonal chemistry. Bioconjug Chem 22(5):825–858

    Article  CAS  Google Scholar 

  20. Rosenthal SJ et al (2011) Biocompatible quantum dots for biological applications. Chem Biol 18(1):10–24

    Article  CAS  Google Scholar 

  21. Choi HS, Frangioni JV (2010) Nanoparticles for biomedical imaging: fundamentals of clinical translation. Mol Imaging 9(6):291–310

    CAS  Google Scholar 

  22. Hutter E, Maysinger D (2011) Gold nanoparticles and quantum dots for bioimaging. Microsc Res Tech 74(7):592–604

    Article  CAS  Google Scholar 

  23. Gaponik N et al (2010) Progress in the light emission of colloidal semiconductor nanocrystals. Small 6(13):1364–1378

    Article  CAS  Google Scholar 

  24. Smith MH et al (2010) Monitoring the erosion of hydrolytically-degradable nanogels via multiangle light scattering coupled to asymmetrical flow field-flow fractionation. Anal Chem 82(2):523–530

    Article  CAS  Google Scholar 

  25. Giddings JC (1993) Field-flow fractionation: analysis of macromolecular, colloidal, and ­particulate materials. Science 260(5113):1456–1465

    Article  CAS  Google Scholar 

  26. Pons T et al (2009) Synthesis of near-infrared-emitting, water-soluble CdTeSe/CdZnS core/shell quantum dots. Chem Mater 21(8):1418–1424

    Article  CAS  Google Scholar 

  27. Bouby M, Geckeis H, Geyer FW (2008) Application of asymmetric flow field-flow fractionation (AsFlFFF) coupled to inductively coupled plasma mass spectrometry (ICPMS) to the quantitative characterization of natural colloids and synthetic nanoparticles. Anal Bioanal Chem 392(7–8):1447–1457

    Article  CAS  Google Scholar 

  28. Hassellov M et al (2008) Nanoparticle analysis and characterization methodologies in environmental risk assessment of engineered nanoparticles. Ecotoxicology 17(5):344–361

    Article  Google Scholar 

  29. Rameshwar T et al (2006) Determination of the size of water-soluble nanoparticles and quantum dots by field-flow fractionation. J Nanosci Nanotechnol 6(8):2461–2467

    Article  CAS  Google Scholar 

  30. Al Hajaj et al. (2011) ACS Nano, 5(6): 4909–4918

    Article  CAS  Google Scholar 

  31. Zattoni A et al (2009) Asymmetrical flow field-flow fractionation with multi-angle light scattering detection for the analysis of structured nanoparticles. J Chromatogr A 1216(52):9106–9112

    Article  CAS  Google Scholar 

  32. Hupfeld S et al (2010) Liposome fractionation and size analysis by asymmetrical flow field-flow fractionation/multi-angle light scattering: influence of ionic strength and osmotic pressure of the carrier liquid. Chem Phys Lipids 163(2):141–147

    Article  CAS  Google Scholar 

  33. Ricq L et al (1997) Electrokinetic characterization of polyethersulfone UF membranes. Desalination 109(3):253–261

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Moquin, A., Winnik, F.M., Maysinger, D. (2013). Separation Science: Principles and Applications for the Analysis of Bionanoparticles by Asymmetrical Flow Field-Flow Fractionation (AF4). In: Weissig, V., Elbayoumi, T., Olsen, M. (eds) Cellular and Subcellular Nanotechnology. Methods in Molecular Biology, vol 991. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-336-7_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-336-7_30

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-335-0

  • Online ISBN: 978-1-62703-336-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics