Skip to main content

Quantification of Intracellular Mitochondrial Displacements in Response to Nanomechanical Forces

  • Protocol
  • First Online:
Book cover Cellular and Subcellular Nanotechnology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 991))

Abstract

Mechanical stress affects various aspects of cell behavior, including cell growth, morphology, differentiation, and genetic expression. Here, we describe a method to quantify the intracellular mechanical response to an extracellular mechanical perturbation, specifically the displacement of mitochondria. A combined fluorescent-atomic force microscope (AFM) was used to simultaneously produce well-defined nanomechanical stimulation to a living cell while optically recording the real-time displacement of fluorescently labeled mitochondria. A single-particle tracking (SPT) approach was then applied in order to quantify the two-dimensional displacement of mitochondria in response to local forces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56:930–933

    Article  Google Scholar 

  2. Putman CA, van der Werf KO, de Grooth BG, van Hulst NF, Greve J (1994) Viscoelasticity of living cells allows high resolution imaging by tapping mode atomic force microscopy. Biophys J 67:1749–1753

    Article  CAS  Google Scholar 

  3. Radmacher M, Tillmann RW, Fritz M, Gaub HE (1992) From molecules to cells—imaging soft samples with the atomic force microscope. Science 257:1900–1905

    Article  CAS  Google Scholar 

  4. Charras G, Horton MA (2001) Cellular mechanotransduction and its modulation: an atomic force microscopy study. Biophys J 80:305A–306A

    Article  Google Scholar 

  5. Rotsch C, Jacobson K, Radmacher M (1999) Dimensional and mechanical dynamics of active and stable edges in motile fibroblasts investigated by using atomic force microscopy. Proc Natl Acad Sci USA 96:921–926

    Article  CAS  Google Scholar 

  6. Pelling AE, Sehati S, Gralla EB, Valentine JS, Gimzewski JK (2004) Local nanomechanical motion of the cell wall of Saccharomyces cerevisiae. Science 305:1147–1150

    Article  CAS  Google Scholar 

  7. Haupt BJ, Pelling AE, Horton MA (2006) Integrated confocal and scanning probe microscopy for biomedical research. ScientificWorldJournal 6:1609–1618

    Article  CAS  Google Scholar 

  8. Horton M, Charras G, Ballestrem C, Lehenkari P (2000) Integration of atomic force and confocal microscopy. Single Mol 1:135–137

    Article  CAS  Google Scholar 

  9. Lehenkari PP, Charras GT, Nykänen A, Horton MA (2000) Adapting atomic force microscopy for cell biology. Ultramicroscopy 82:289–295

    Article  CAS  Google Scholar 

  10. Bereiterhahn J, Voth M (1994) Dynamics of mitochondria in living cells—shape changes, dislocations, fusion, and fission of mitochondria. Microsc Res Tech 27:198–219

    Article  CAS  Google Scholar 

  11. Brady S, Lasek R, Allen R (1982) Fast axonal transport in extruded axoplasm from squid giant axon. Science 218:1129–1131

    Article  CAS  Google Scholar 

  12. Heggeness MH, Simon M, Singer SJ (1978) Association of mitochondria with microtubules in cultured cells. Proc Natl Acad Sci USA 75:3863–3866

    Article  CAS  Google Scholar 

  13. Morris R, Hollenbeck P (1995) Axonal transport of mitochondria along microtubules and F-actin in living vertebrate neurons. J Cell Biol 131:1315–1326

    Article  CAS  Google Scholar 

  14. Drubin D, Jones H, Wertman K (1993) Actin structure and function: roles in mitochondrial organization and morphogenesis in budding yeast and identification of the phalloidin-binding site. Mol Biol Cell 4:1277–1294

    CAS  Google Scholar 

  15. Rudiger Suelmann RF (2000) Mitochondrial movement and morphology depend on an intact actin cytoskeleton in Aspergillus nidulans. Cell Motil Cytoskeleton 45:42–50

    Article  Google Scholar 

  16. Wang N, Butler JP, Ingber DE (1993) Mechanotransduction across the cell-surface and through the cytoskeleton. Science 260:1124–1127

    Article  CAS  Google Scholar 

  17. Alenghat FJ, Ingber DE (2002) Mechano­transduction: all signals point to cytoskeleton, matrix, and integrins. Sci STKE 2002:pe6

    Article  Google Scholar 

  18. Blumenfeld R (2006) Isostaticity and controlled force transmission in the cytoskeleton: a model awaiting experimental evidence. Biophys J 91:1970–1983

    Article  CAS  Google Scholar 

  19. Sbalzarini IF, Koumoutsakos P (2005) Feature point tracking and trajectory analysis for video imaging in cell biology. J Struct Biol 151:182–195

    Article  CAS  Google Scholar 

  20. Silberberg YR, Pelling AE, Yakubov GE, Crum WR, Hawkes DJ, Horton MA (2008) Tracking displacements of intracellular organelles in response to nanomechanical forces, presented at Biomedical imaging: from nano to macro, 2008. ISBI 2008. 5th IEEE international ­symposium on 14–17 May 2008, Paris, France. pp 1335–1338

    Google Scholar 

  21. Silberberg YR, Pelling AE, Yakubov GE, Crum WR, Hawkes DJ, Horton MA (2008) Mitochondrial displacements in response to nanomechanical forces. J Mol Recognit 21:30–36

    Article  CAS  Google Scholar 

  22. Levy R, Maaloum M (2002) Measuring the spring constant of atomic force microscope cantilevers: thermal fluctuations and other methods. Nanotechnology 13:33–37

    Article  Google Scholar 

Download references

Acknowledgments

Y.R.S. would like to thank the Japanese Society for the Promotion of Science (JSPS) for a post-doctoral fellowship grant. A.E.P. acknowledges generous support from the Canada Research Chairs program, the Province of Ontario Early Researcher Award, and the Natural Sciences and Engineering Research Council. The authors would like to gratefully acknowledge the tremendous support and mentorship of Professor Michael Horton (1948–2010) and his inspiration for this work.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Silberberg, Y.R., Pelling, A.E. (2013). Quantification of Intracellular Mitochondrial Displacements in Response to Nanomechanical Forces. In: Weissig, V., Elbayoumi, T., Olsen, M. (eds) Cellular and Subcellular Nanotechnology. Methods in Molecular Biology, vol 991. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-336-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-336-7_18

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-335-0

  • Online ISBN: 978-1-62703-336-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics