Skip to main content

Formation of Pit-Spanning Phospholipid Bilayers on Nanostructured Silicon Dioxide Surfaces for Studying Biological Membrane Events

  • Protocol
  • First Online:
Cellular and Subcellular Nanotechnology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 991))

Abstract

Zwitterionic phospholipid vesicles are known to adsorb and ultimately rupture on flat silicon dioxide (SiO2) surfaces to form supported lipid bilayers. Surface topography, however, alters the kinetics and mechanistic details of vesicles adsorption, which under certain conditions may be exploited to form a suspended bilayer. Here we describe the use of nanostructured SiO2 surfaces prepared by the colloidal lithography technique to scrutinize the formation of suspended 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipid bilayers from a solution of small unilamellar lipid vesicles (SUVs). Atomic force microscopy (AFM) and quartz crystal microbalance with dissipation monitoring (QCM-D) were employed to characterize nanostructure fabrication and lipid bilayer assembly on the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gennis RB (1989) Biomembranes: moleculare structure and function. Springer, New York

    Google Scholar 

  2. Lipowsky R, Sackmann E (eds) (1995) Morphology of vesicles, vol 1. Elsevier Science B.V, Amsterdam

    Google Scholar 

  3. Mathews CK, van Holde KE, Ahern KG (1999) Biochemistry. Addison Wesley Longman, San Fransisco

    Google Scholar 

  4. Sackmann E (1996) Supported membranes: scientific and practical applications. Science 271:43–48

    Article  CAS  Google Scholar 

  5. Salafsky J, Groves JT, Boxer SG (1996) Architecture and function of membrane proteins in planar supported bilayers: a study with photosynthetic reaction centers. Biochemistry 35:14773–14781

    Article  CAS  Google Scholar 

  6. Larsson C, Rodahl M, Hook F (2003) Characterization of DNA immobilization and subsequent hybridization on a 2D arrangement of streptavidin on a biotin-modified lipid bilayer supported on SiO2. Anal Chem 75:5080–5087

    Article  CAS  Google Scholar 

  7. Graneli A, Rydstrom J, Kasemo B, Hook F (2003) Formation of supported lipid bilayer membranes on SiO2 from proteoliposomes containing transmembrane proteins. Langmuir 19:842–850

    Article  CAS  Google Scholar 

  8. Larsson C, Bramfeldt H, Wingren C, Borrebaeck C, Hook F (2005) Gravimetric antigen detection utilizing antibody-modified lipid bilayers. Anal Biochem 345:72–80

    Article  CAS  Google Scholar 

  9. Radler J, Strey H, Sackmann E (1995) Phenomenology and kinetics of lipid bilayer spreading on hydrophilic surfaces. Langmuir 11:4539–4548

    Article  Google Scholar 

  10. Groves JT, Boxer SG (2002) Micropattern formation in supported lipid membranes. Acc Chem Res 35:149–157

    Article  CAS  Google Scholar 

  11. Keller CA, Kasemo B (1998) Surface specific kinetics of lipid vesicle adsorption measured with a quartz crystal microbalance. Biophys J 75:1397–1402

    Article  CAS  Google Scholar 

  12. Reimhult E, Hook F, Kasemo B (2003) Intact vesicle adsorption and supported biomembrane formation from vesicles in solution: influence of surface chemistry, vesicle size, temperature, and osmotic pressure. Langmuir 19:1681–1691

    Article  CAS  Google Scholar 

  13. Franz V, Loi S, Mueller H, Bamberg E, Butt HJ (2002) Tip penetration through lipid bilayer in atomic force microscopy. Colloids Surf B Biointerfaces 23:191–2000

    Article  CAS  Google Scholar 

  14. Reimhult E, Zach M, Hook F, Kasemo B (2006) A multitechnique study of liposome adsorption on Au and lipid bilayer formation on SiO2. Langmuir 22:3313–3319

    Article  CAS  Google Scholar 

  15. Dimitrievski K, Reimhult E, Kasemo B, Zhdanov VP (2004) Simulations of temperature dependence of the formation of a supported lipid bilayer via vesicle adsorption. Colloids Surf B Biointerfaces 39:77–86

    Article  CAS  Google Scholar 

  16. Richter RP, Berat R, Brisson AR (2006) Formation of solid-supported lipid bilayers: an integrated view. Langmuir 22:3497–3505

    Article  CAS  Google Scholar 

  17. Pfeiffer I, Petronis S, Koper I, Kasemo B, Zach M (2010) Vesicle adsorption and phospholipid bilayer formation on topographically and chemically nanostructured surfaces. J Phys Chem B 114:4623–4631

    Article  CAS  Google Scholar 

  18. Sapuri-Butti AR, Butti RC, Parikh AN (2007) Characterization of supported membranes on topographically patterned polymeric elastomers and their applications to microcontact printing. Langmuir 23:12645–12654

    Article  CAS  Google Scholar 

  19. Okazaki T, Morigaki K, Taguchi T (2006) Phospholipid vesicle fusion on micropatterned polymeric bilayer substrates. Biophys J 91: 1757–1766

    Article  CAS  Google Scholar 

  20. White RJ, Zhang B, Daniel S, Tang JM, Ervin EN, Cremer PS, White HS (2006) Ionic conductivity of the aqueous layer separating a lipid bilayer membrane and a glass support. Langmuir 22:10777–10783

    Article  CAS  Google Scholar 

  21. Schmitt EK, Vrouenraets M, Steinem C (2006) Channel activity of OmpF monitored in nano-BLMs. Biophys J 91:2163–2171

    Article  CAS  Google Scholar 

  22. Reimhult E, Kumar K (2008) Membrane biosensor platforms using nano- and microporous supports. Trends Biotechnol 26:82–89

    Article  CAS  Google Scholar 

  23. Han X, Studer A, Sehr H, Geissbühler I, Di Berardino M, Winkler FK, Tiefenauer LX (2007) Nanopore arrays for stable and functional free-standing lipid bilayers. Adv Mater 19:4466–4470

    Article  CAS  Google Scholar 

  24. Cheng Y, Bushby RJ, Evans SD, Knowles PF, Miles RE, Ogier SD (2001) Single ion channel sensitivity in suspended bilayers on micromachined supports. Langmuir 17:1240–1242

    Article  CAS  Google Scholar 

  25. White RJ, Ervin EN, Yang T, Chen X, Daniel S, Cremer PS, White HS (2007) Single ion-channel recordings using glass nanopore membranes. J Am Chem Soc 129:11766–11775

    Article  CAS  Google Scholar 

  26. Kresak S, Hianik T, Naumann RLC (2009) Giga-seal solvent-free bilayer lipid membranes: from single nanopores to nanopore arrays. Soft Matter 5:4021–4032

    Article  CAS  Google Scholar 

  27. Mager MD, Almquist B, Melosh NA (2008) Formation and characterization of fluid lipid bilayers on alumina. Langmuir 24: 12734–12737

    Article  CAS  Google Scholar 

  28. Hennesthal C, Drexler J, Steinem C (2002) Membrane-suspended nanocompartments based on ordered pores in alumina. Chemphyschem 10:885–889

    Article  Google Scholar 

  29. Romer W, Steinem C (2004) Impedance analysis and single-channel recordings on nano-black lipid membranes based on porous alumina. Biophys J 86:955–965

    Article  Google Scholar 

  30. Grant AW, Hu QH, Kasemo B (2004) Transmission electron microscopy ‘windows’ for nanofabricated structures. Nanotechnology 15:1175–1181

    Article  CAS  Google Scholar 

  31. Weiskopf D, Schmitt EK, Kluhr MH, Dertinger SK, Steinem C (2007) Micro-BLMs on highly ordered porous silicon substrates: rupture process and lateral mobility. Langmuir 23: 9134–9139

    Article  CAS  Google Scholar 

  32. Hanarp P, Sutherland DS, Gold J, Kasemo B (2003) Control of nanoparticle film structure for colloidal lithography. Colloids Surf A 214. doi:dx.doi.org/10.1016/S0927-7757(02)00367-9

  33. Pfeiffer I, Seantier B, Petronis S, Sutherland D, Kasemo B, Zach M (2008) Influence of nanotopography on phospholipid bilayer formation on silicon dioxide. J Phys Chem B 112:5175–5181

    Article  CAS  Google Scholar 

  34. Jonsson MP, Dahlin AB, Feuz L, Petronis S, Höök F (2010) Locally functionalized short-range ordered nanoplasmonic pores for bioanalytical sensing. Anal Chem 82:2087–2094

    Article  CAS  Google Scholar 

  35. Svedhem S, Pfeiffer I, Larsson C, Wingren C, Borrebaeck C, Hook F (2003) Patterns of DNA-labeled and scFv-antibody-carrying lipid vesicles directed by material-specific immobilization of DNA and supported lipid bilayer formation on an Au/SiO2 template. Chembiochem 4:339–343

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Pfeiffer, I., Zäch, M. (2013). Formation of Pit-Spanning Phospholipid Bilayers on Nanostructured Silicon Dioxide Surfaces for Studying Biological Membrane Events. In: Weissig, V., Elbayoumi, T., Olsen, M. (eds) Cellular and Subcellular Nanotechnology. Methods in Molecular Biology, vol 991. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-336-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-336-7_12

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-335-0

  • Online ISBN: 978-1-62703-336-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics