Skip to main content

Engineering a Human-Like Glycosylation to Produce Therapeutic Glycoproteins Based on 6-Linked Sialylation in CHO Cells

  • Protocol
  • First Online:
Glycosylation Engineering of Biopharmaceuticals

Part of the book series: Methods in Molecular Biology ((MIMB,volume 988))

Abstract

When recombinant glycoproteins for therapeutic use are to be produced on an industrial scale, there is a crucial need for technologies that can engineer fast-growing stable cells secreting the protein drug at a high rate and with a defined and safe glycosylation profile. Current cell lines approved for drug production are essentially from rodent origin. Their glycosylation machinery often adds undesired carbohydrate determinants which may alter protein folding, induce immunogenicity, and reduce circulatory life span of the drug. Notably, sialic acid as N-acetylneuraminic acid is not efficiently added in most mammalian cells and the 6-linkage is missing in rodent cells. Engineering cells with the various enzymatic activities required for sialic acid transfer has not yet succeeded in providing a human-like pattern of glycoforms to protein drugs. To date, there is a need for engineering animal cells and get highly sialylated products that resemble as closely as possible to human proteins. We have designed ST6Gal minigenes to optimize the ST6GalI sialyltransferase activity and used them to engineer ST6(+)CHO cells. When stably transfected in cells expressing a protein of interest or not, these constructs have proven to equip cell clones with efficient transfer activity of 6-linked sialic acid. In this chapter, we describe a methodology for generating healthy stable adherent clones with hypersialylation activity and high secretion rate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wacker C, Berger CN, Girard P, Meier R (2011) Glycosylation profiles of therapeutic antibody pharmaceuticals. Eur J Pharm Biopharm 79:503–507

    Article  PubMed  CAS  Google Scholar 

  2. Chou HH, Takematsu H, Diaz S, Iber J, Nickerson E, Wright KL et al (1998) A mutation in human CMP-sialic acid hydroxylase occurred after the Homo-Pan divergence. Proc Natl Acad Sci U S A 95:11751–11756

    Article  PubMed  CAS  Google Scholar 

  3. Chung CH, Mirakhur B, Chan E, Le QT, Berlin J, Morse M et al (2008) Cetuximab-induced anaphylaxis and IgE specific for galactose-alpha-1,3-galactose. N Engl J Med 358:1109–1117

    Article  PubMed  CAS  Google Scholar 

  4. Noguchi A, Mukuria CJ, Suzuki E, Naiki M (1995) Immunogenicity of N-glycolylneuraminic acid-containing carbohydrate chains of recombinant human erythropoietin expressed in Chinese hamster ovary cells. J Biochem 117:59–62

    PubMed  CAS  Google Scholar 

  5. Zhu A, Hurst R (2002) Anti-N-glycolylneuraminic acid antibodies identified in healthy human serum. Xenotransplantation 9:376–381

    Article  PubMed  Google Scholar 

  6. Byres E, Paton AW, Paton JC, Lofling JC, Smith DF, Wilce MC et al (2008) Incorporation of a non-human glycan mediates human susceptibility to a bacterial toxin. Nature 456:648–652

    Article  PubMed  CAS  Google Scholar 

  7. Hedlund M, Padler-Karavani V, Varki NM, Varki A (2008) Evidence for a human-specific mechanism for diet and antibody-mediated inflammation in carcinoma progression. Proc Natl Acad Sci U S A 105:18936–18941

    Article  PubMed  CAS  Google Scholar 

  8. Lee EU, Roth J, Paulson JC (1989) Alteration of terminal glycosylation sequences on N-linked oligosaccharides of Chinese hamster ovary cells by expression of beta-galactoside alpha 2,6-sialyltransferase. J Biol Chem 264:13848–13855

    PubMed  CAS  Google Scholar 

  9. Morell AG, Gregoriadis G, Scheinberg IH, Hickman J, Ashwell G (1971) The role of sialic acid in determining the survival of glycoproteins in the circulation. J Biol Chem 246:1461–1467

    PubMed  CAS  Google Scholar 

  10. Briggs DW, Fisher JW, George WJ (1974) Hepatic clearance of intact and desialylated erythropoietin. Am J Physiol 227:1385–1388

    PubMed  CAS  Google Scholar 

  11. Bork K, Horstkorte R, Weidemann W (2009) Increasing the sialylation of therapeutic glycoproteins: the potential of the sialic acid biosynthetic pathway. J Pharm Sci 98:3499–3508

    Article  PubMed  CAS  Google Scholar 

  12. Bork K, Reutter W, Weidemann W, Horstkorte R (2007) Enhanced sialylation of EPO by overexpression of UDP-GlcNAc 2-epimerase/ManAc kinase containing a sialuria mutation in CHO cells. FEBS Lett 581:4195–4198

    Article  PubMed  CAS  Google Scholar 

  13. Jeong YT, Choi O, Lim HR, Son YD, Kim HJ, Kim JH (2008) Enhanced sialylation of recombinant erythropoietin in CHO cells by human glycosyltransferase expression. J Microbiol Biotechnol 18:1945–1952

    PubMed  CAS  Google Scholar 

  14. Son YD, Jeong YT, Park SY, Kim JH (2011) Enhanced sialylation of recombinant human erythropoietin in Chinese hamster ovary cells by combinatorial engineering of selected genes. Glycobiology 21:1019–1028

    Article  PubMed  CAS  Google Scholar 

  15. Fukuta K, Yokomatsu T, Abe R, Asanagi M, Makino T (2000) Genetic engineering of CHO cells producing human interferon-gamma by transfection of sialyltransferases. Glycoconj J 17:895–904

    Article  PubMed  CAS  Google Scholar 

  16. Ferrari J, Gunson J, Lofgren J, Krummen L, Warner TG (1998) Chinese hamster ovary cells with constitutively expressed sialidase antisense RNA produce recombinant DNase in batch culture with increased sialic acid. Biotechnol Bioeng 60:589–595

    Article  PubMed  CAS  Google Scholar 

  17. Minch SL, Kallio PT, Bailey JE (1995) Tissue plasminogen activator coexpressed in Chinese hamster ovary cells with alpha(2,6)-sialyltransferase contains NeuAc alpha(2,6)Gal beta(1,4)Glc-N-AcR linkages. Biotechnol Prog 11:348–351

    Article  PubMed  CAS  Google Scholar 

  18. Bragonzi A, Distefano G, Buckberry LD, Acerbis G, Foglieni C, Lamotte D et al (2000) A new Chinese hamster ovary cell line expressing alpha2,6-sialyltransferase used as universal host for the production of human-like sialylated recombinant glycoproteins. Biochim Biophys Acta 1474:273–282

    Article  PubMed  CAS  Google Scholar 

  19. Damiani R, Oliveira JE, Vorauer-Uhl K, Peroni CN, Vianna EG, Bartolini P et al (2009) Stable expression of a human-like sialylated recombinant thyrotropin in a Chinese hamster ovary cell line expressing alpha2,6-sialyltransferase. Protein Expr Purif 67:7–14

    Article  PubMed  CAS  Google Scholar 

  20. Zhang X, Lok SH, Kon OL (1998) Stable expression of human alpha-2,6-sialyltransferase in Chinese hamster ovary cells: functional consequences for human erythropoietin expression and bioactivity. Biochim Biophys Acta 1425:441–452

    Article  PubMed  CAS  Google Scholar 

  21. Jassal R, Jenkins N, Charlwood J, Camilleri P, Jefferis R, Lund J (2001) Sialylation of human IgG-Fc carbohydrate by transfected rat alpha2,6-sialyltransferase. Biochem Biophys Res Commun 286:243–249

    Article  PubMed  CAS  Google Scholar 

  22. Legaigneur P, Breton C, El Battari A, Guillemot JC, Auge C, Malissard M et al (2001) Exploring the acceptor substrate recognition of the human beta-galactoside alpha 2,6-sialyltransferase. J Biol Chem 276:21608–21617

    Article  PubMed  CAS  Google Scholar 

  23. Paulson JC, Colley KJ (1989) Glycosyltransferases. Structure, localization, and control of cell type-specific glycosylation. J Biol Chem 264:17615–17618

    PubMed  CAS  Google Scholar 

  24. Datta AK, Paulson JC (1995) The sialyltransferase “sialylmotif” participates in binding the donor substrate CMP-NeuAc. J Biol Chem 270:1497–1500

    Article  PubMed  CAS  Google Scholar 

  25. Datta AK, Paulson JC (1997) Sialylmotifs of sialyltransferases. Indian J Biochem Biophys 34:157–165

    PubMed  CAS  Google Scholar 

  26. Datta AK, Chammas R, Paulson JC (2001) Conserved cysteines in the sialyltransferase sialylmotifs form an essential disulfide bond. J Biol Chem 276:15200–15207

    Article  PubMed  CAS  Google Scholar 

  27. Angata K, Yen TY, El Battari A, Macher BA, Fukuda M (2001) Unique disulfide bond structures found in ST8Sia IV polysialyltransferase are required for its activity. J Biol Chem 276:15369–15377

    Article  PubMed  CAS  Google Scholar 

  28. Tsuji S, Datta AK, Paulson JC (1996) Systematic nomenclature for sialyltransferases. Glycobiology 6:v–vii

    Article  PubMed  CAS  Google Scholar 

  29. Jeanneau C, Chazalet V, Auge C, Soumpasis DM, Harduin-Lepers A, Delannoy P et al (2004) Structure-function analysis of the human sialyltransferase ST3Gal I: role of n-glycosylation and a novel conserved sialylmotif. J Biol Chem 279:13461–13468

    Article  PubMed  CAS  Google Scholar 

  30. Datta AK, Sinha A, Paulson JC (1998) Mutation of the sialyltransferase S-sialylmotif alters the kinetics of the donor and acceptor substrates. J Biol Chem 273:9608–9614

    Article  PubMed  CAS  Google Scholar 

  31. Fenteany FH, Colley KJ (2005) Multiple signals are required for alpha2,6-sialyltransferase (ST6Gal I) oligomerization and Golgi localization. J Biol Chem 280:5423–5429

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The “Preparation and Uses of Gene Sequences encoding Chimerical Glycosyltransferases with Optimized Glycosylation Activity” has been patented as EP2019864 (C. Ronin and G. Guiraudie-Capraz, inv).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Maï, N.E., Donadio-Andréi, S., Iss, C., Calabro, V., Ronin, C. (2013). Engineering a Human-Like Glycosylation to Produce Therapeutic Glycoproteins Based on 6-Linked Sialylation in CHO Cells. In: Beck, A. (eds) Glycosylation Engineering of Biopharmaceuticals. Methods in Molecular Biology, vol 988. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-327-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-327-5_2

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-326-8

  • Online ISBN: 978-1-62703-327-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics