Skip to main content

Hydrophobic Interaction Chromatography to Analyze Glycoproteins

  • Protocol
  • First Online:
Glycosylation Engineering of Biopharmaceuticals

Part of the book series: Methods in Molecular Biology ((MIMB,volume 988))

Abstract

Hydrophobic interaction chromatography (HIC) is one of many separation techniques that can be used to analyze proteins. The separation mechanism is based on the adsorption of the hydrophobic region of the protein to the hydrophobic ligands attached to the column in the presence of high salt. The proteins are then eluted by descending salt concentration. Here we describe the use of this HIC technique to evaluate the hydrophobicity of different monoclonal antibodies (mAbs) and to separate different heterogeneities that occur in mAb.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tiselius A (1948) Adsorption separation by salting out. Mineral Geol 26B:1

    Google Scholar 

  2. Hjerten S (1973) Some general aspects of hydrophobic interaction chromatography. J Chromatogr 87:325–331

    Article  CAS  Google Scholar 

  3. Horvath C, Melander W, Molnar I (1976) Solvophobic interactions in liquid chromatography with nonpolar stationary phases. J Chromatogr 125:129–156

    Article  CAS  Google Scholar 

  4. Melander W, Horvath C (1977) Salt effects on hydrophobic interactions in precipitation and chromatography of proteins: an interpretation of the lyotropic series. Arch Biochem Biophys 183:200–215

    Article  PubMed  CAS  Google Scholar 

  5. Melander WR, El Rassi Z, Horvath C (1989) Interplay of hydrophobic and electrostatic interactions in biopolymer chromatography. J Chromatogr 469:3–27

    Article  PubMed  CAS  Google Scholar 

  6. Queiroz JA, Tomaz CT, Cabral JMS (2001) Hydrophobic interaction chromatography of proteins. J Biotechnol 87:143–159

    Article  PubMed  CAS  Google Scholar 

  7. Kato Y, Kitamura T, Hashimoto T (1986) New resin-based hydrophilic support for high-performance hydrophobic interaction chromatography. J Chromatogr 360:260–265

    Article  PubMed  CAS  Google Scholar 

  8. Rao S, Bordunov A, Heckenberg A, Pohl C (2006) A hydrophobic interaction chromatography column with improved hydrolytic stability for protein separation and proteomics applications. Amer Biotech lab April: 8–10

    Google Scholar 

  9. Cacia J, Keck R, Presta LG, Frenz J (1996) Isomerization of an aspartic acid residue in the complementarity-determining regions of a recombinant antibody to human IgE: identification and effect on binding affinity. Biochemistry 35:1897–1903

    Article  PubMed  CAS  Google Scholar 

  10. Harris RJ, Kabakoff B, Macchi FD, Shen FJ, Kwong M, Andya JD et al (2001) Identification of multiple sources of charge heterogeneity in a recombinant antibody. J Chromatogr B Biomed Sci Appl 752:233–245

    Article  PubMed  CAS  Google Scholar 

  11. Beck A, Bussat M-C, Zorn N, Robillard V, Klinguer-Hamour C, Chenu S et al (2005) Characterization by liquid chromatography combined with mass spectrometry of monoclonal anti-IGF-1 receptor antibodies produced in CHO and NS0 cells. J Chromatogr B Analyt Technol Biomed Life Sci 819:203–218

    Article  PubMed  CAS  Google Scholar 

  12. Wakankar AA, Borchardt RT, Eigenbrot C, Shia S, Wang J, Shire SJ et al (2007) Aspartate isomerization in the complementarity-determining regions of two closely related monoclonal antibodies. Biochemistry 46:1534–1544

    Article  PubMed  CAS  Google Scholar 

  13. Beck A, Wagner-Rousset E, Bussat M-C, Lokteff M, Klinguer-Hamour C, Haeuw J-F, Goetsch L, Wurch T, Dorsselaer AV, Corvaïa N (2008) Trends in glycosylation, glycoanalysis and glycoengineering of therapeutic antibodies and Fc-fusion proteins. Curr Pharm Biotechnol 9:482–501

    Article  PubMed  CAS  Google Scholar 

  14. Qian J, Liu T, Yang L, Daus A, Crowley R, Zhou Q (2007) Structural characterization of N-linked oligosaccharide on monoclonal antibody cetuximab by the combination of orthogonal matrix-assisted laser desorption/ionization hybrid quadrupole–quadrupole time-of-flight tandem mass spectrometry and sequential enzymatic digestion. Anal Biochem 364:8–18

    Article  PubMed  CAS  Google Scholar 

  15. Grebenau RC, Goldenberg DM, Chang C-H, Koch GA, Gold DA, Kunz A, Hansen HJ (1992) Microheterogeneity of a purified IgG1 due to asymmetric Fab glycosylation. Mol Immunol 29:751–758

    Article  PubMed  CAS  Google Scholar 

  16. Black SD, Mould DR (1991) Development of hydrophobicity parameters to analyze proteins which bear post or cotranslational modifications. Anal Biochem 193:72–82

    Article  PubMed  CAS  Google Scholar 

  17. Dawson RMC, Elliott DC, Elliott WH, Jones KM (1986) Data for biochemical research, 3rd edn. Oxford Science Publications, Oxford, p 432

    Google Scholar 

  18. Chiti F, Stefani M, Taddei N, Ramponi G, Dobson CM (2003) Rationalization of the effects of mutations on peptide and protein aggregation rates. Nature 424:805–808

    Article  PubMed  CAS  Google Scholar 

  19. Valliere-Douglass J, Wallace A, Balland A (2008) Separation of population of antibody variants by fine tuning of hydrophobic-interaction chromatography operating conditions. J Chromatogr A 1214:81–89

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to thank our colleagues in purification Bioprocess R&D for providing us with material and technical support. We gratefully thank Roxana Butoi for hydrophobicity index, Yang Wang for support of this work, and Lisa McCormick for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Rustandi, R.R. (2013). Hydrophobic Interaction Chromatography to Analyze Glycoproteins. In: Beck, A. (eds) Glycosylation Engineering of Biopharmaceuticals. Methods in Molecular Biology, vol 988. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-327-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-327-5_13

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-326-8

  • Online ISBN: 978-1-62703-327-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics